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ABSTRACT

Thina paper contatns a general rewiew of
extsting ompert aystem tooiiniques, terminology, and
a histery ef their development. Aftar a detailed
discuniion of the methodology of knowledge elicita-
tion and raprosentation, the use of produdtion
rules it the knowlsdge database, seavoll stwategies,
and uncertainty handling, the application of expert
systems to archaeology ts discussed. It is conclu-
ded that in their present form expert systems have
a number of seriousa practical and theoretical prob-
lems. They will require a great deal of further
work before being of use in archaeology.
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1. Introduction

The idea of a thinking machine has long been a
staple of science fiction novels, films, and short
stories, HAL in "2001: A Space Odyssey" is one
example of a super-intelligent computer which (who?)
has 'human feelings' while Deep Thought in the
"Hitch Hiker's Guide" series is another. It is the
ability of the bomb in the film "Dark Star" to reason
which causes the problems - although its reasoning
was obviously flawed!

On a less impressive scale, thinking machines
are now becoming a reality, although much depends,
of course, on your definition of thimking. Few
would accept the proposition that computers can
'think’' in the same way that humans can, but it has
been demonstrated that in certain limited spheres of
competence machines can already equal or surpass
human performance. However, when the program of one
of these 'intelligent' machines is examined, it is
clear that the intelligence is only apparent and
achieved by means of clever programming devices.
What these machines actually do is to reproduce the
results of what, in a human, would be comsidered to
be intelligent thought. Confusion may arise because
of the adoption of terms such as 'intelligence',
'reasoning' and 'understanding' which can give a
misleading impression of these programs'
capabilities,

Such programs have been used to make decisions

and solve problems in a variety of areas and this
paper is intended to discuss the development of
these 'expert systems' and examine their potential
and the problems connected with their use in
archaeology.

2. GSome Definitions

An expert system is fundamentally a 'problem-
solver' program which operates most successfully
within a restricted, pre-defined domain. There are
two main features of an expert system. The first of
these is the way in which knowledge 1s represented
in the program, the second is the way in which it
behaves towards the user.

, The organisation of knowledge within an expert
system is perhaps its main distinguishing feature
when compared to a more conventional program. In a
conventional procedural program, knowledge of a sub-
ject or domain is not held separately from the
procedures:

In such programs, knowledge about that
application is scattered throughout the code,
and changing a single fact may require a
change to hundreds of lines of code in
dozens of different modules (Sowa, 1984,

p. 278).

In contrast expert systems employ a declarative
approach, in which knowledge is held separately
from the controlling program in a knowledge base.
Thie knowledge base consists of a series of rules
and facts which together provide a description of
the subject domain, It may be modified as required,
but any changes do not affect the program itself,
S1mply Tthne resulls that 1t gilves., An expert system
may be seen as having three main parts - firet, the
knowledge base; secondly, the inference engine or
control system, which remains unchanged when the
knowledge base is modified and which performs the
reasoning of the system as a whole; and thirdly, a
global database consisting of a store of informa-
tion concerning the consultation at hand (Weiss and
Kulikowski, 1984, p. 41).

The second distinguishing feature of an
expert system is the way in which it behaves
towards the user. The system is designed to use
the domain knowledge represented within it to simu-
late the performance of a human expert in the same
field. This simulation of expert performance
requires that not only should the system be able to
reason through a problem and provide a reliable
answer, but that it should also be able to explain
its steps in reasoning to the user, recognise if
information is absent or untrustworthy and be able
to request further information from the user. Thus
the gystem may be interrogated about the questions
that it has asked the user in the course of a con-
sultation, or about the stage it has reached in its
investigations, or about the conclusions it has
offered, as well as providing accurate, reliable
results - just as would be expected of a human
expert.

Expert systems are seen as acting as consul-
tants or advisors. Michie (1982, p. 197) divides
this consultancy function into three "user-modes".
The expert system may be approached by the user in
the role of a client, seeking information and
requiring diagnoses or prognoses. Alternatively
the user may act as pupil, learning from the gystem
through a series of questions and answera.

Finally, the user may take the role of the tutor,
refining, modifying or enlarging the system’s
knowledge., All three "user-modes" may be combined
within a single system: indeed, a system would be
much more powerful and be more likely to obtain
user-acceptance if it did combine these features,
rather than simply appearing to act as an omipo-
tent, omnicognisant oracle. One example of such a
'complete' system is that described by Davis (1982).
He worked on a suite of three programs for medical
diagnosis, each program effectively being an expert
system but all sharing the same knowledge base
(Davis, 1982, p. 58), MYCIN was the "performance
program', supplying consultative advice to the
physician; TEIRESIAS was the knowledge acquisition
program, which allowed a human expert to educate
the program; and finally, GUIDON functioned as
tutor to a student. The system is therefore not a
static program, but is open to verification, correc-
tion and expansion., Such a system and its three
associated '"user-modes™ clearly has applications
beyond that of medicine, and these characteristica
should be seen as the sign of a 'mature' expert
system. Not only are these three "user-modes'
equally applicable to an archaeological expert sys-
tem, they should also be seen as a requirement of
any system that is to be actively used in the
field.

Expert systems can also be divided into
three main categories, defined by the problem areas
to which they are applied: classification, design
and decision support (Sowa, 1984, p. 280).
Classification gsystems are by far the most common
form of expert system. They handle a wide range of
generally diagnostic problems, gathering data about
a specific problem and suggesting a cause and/or a
solution, and are the type used in medical problems
and in mineral or oil prospection, for example.
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Such systems require large amounts of data, and may
well be applicable to archaeological problems, many
of which can be broken down into a diagnostic form
(for example, the system for categorising beakefs
(Bishop and Thomas, 1984)).

Design-based expert systems are less likely to
be of use to archaeologists at their present stage
of development since they use exact reasoning on
highly structured data. For instance, the expert
system Rl (see, for example, Edelson 1982, pp, 50-
56), configures components for the VAX line of com-—
puters produced by Digital Equipment Corporation. A
design system will search for combinations that
satisfy a given goal - given a set of components and
their relationship to each other, it can design the
layout of a computer chip, for example.

Decision support systeme are seen by Sowa
(1984,p. 280) as typically being intelligent front-
ends to databases. They use the database and their
knowledge base to explore alternatives, solve prob-
lems and make predictions, unlike a conventional
database, These are often seen as being applicable
to the business community, but they may also be of
considerable use to archaeologists.

These divisions are not mutually exclusive:
a single system may incorporate one or more features.
However, for archaeological systems, one feature
that is seen to be of crucial importance is the abi-
lity to handle uncertainty - not simply in the sense
of incomplete data, but algo in terms of imcomplete
knowledge with which to reason about the data. This
question of uncertainty will be discussed below.

The knowledge in an expert system is commonly
represented as rules of the "If (A), then (B)" form,
with facts simply being the trivial cases of rules,
having nothing to prove.

3. History

Expert systems are an aspect of artificial
intelligence which developed particularly from the
late 1970s as part of mainstream artificial intelli-
gence research.

The first attempts at thinking machines were
based on the general exploration of human reasoning
and tried to produce a few powerful solutions,
applicable to any problem which could be reduced to
mathematical arguments. It was hoped that the power
of the computer coupled with representations of
single laws of human reasoning would lead to an
expert, and possibly even a superhuman performance
from the machine. Various techniques were explored
including theorem proving, searches, generate and
test, and means—end analysis. Although limited suc-
cess was achieved they failed to deal with real
problems and performance was poor compared with that
of a human expert.

The realisation that knowledge was as impor-
tant to the problem-solving process as reasoning
itself led to two major refinements. Domain-
specific knowledge was incorporated into the pro-
grams and heuristic techniques were developed.
Heuristic programming attempts to model the rules of
thumb, informed guesses, and general domain know-
ledge which are used by human beings in problem sol-
ving. The introduction of domain-specific knowledge
had three major benefits (Alty and Coombs, 1984,
pp. 85-86): the real world problems which the
general purpose problem solvers had been unable to
handle could be tackled; the emphasis changed from
the discovery of a few powerful rules to the repre-
sentation of knowledge in such a way that it could
be used effectively; and the nature of the proces-
ses which the programs were attempting to model
were explored, that is, philosophical and psycho-
logical aspects were introduced. It was found that
these systems were most effective in those areas
where problem solving depended on personal knowledge
and experience - hence the name 'expert systems'
(Alty and Coombs, 1984, p. 86).

Among the earliest domain-specific systems
were those applied to games such as chess (Michie,
1982) and chequers (draughts) (Samuel, 1963).
These programs were also among the first to exploit
the advantages of heuristic programming rather than
relying on the simpler and cheaper 'brute force
method' (Michie, 1982, p. 180). The latter is
unselective and will examine all of the options
available, continuing to do so even after reaching
the point at which a human problem-solver would
have abandoned a particular approach as being
unlikely to lead to success. In theory this manner
of problem solving will eventually produce the
answer, In fact, however, because of the combina-
torial explosion of possibilities in some problems
the amount of processing time necesasary becomes
ingurmountable. Boden (1977, p. 512) gives figures
of 1040 possible board positions in the game of
draughts, and 10!2¢ board positions for chess, for
example,

Early systems which used domain-specific
knowledge included DENDRAL (Buchanan and Feigenbaum,
1978) which used a generate and test technique to
outperform human experts in deducing the structure
of organic molecules from mass spectrographe, and
MACSYMA (Barr and Feigenbaum, 1982, vol, 2, pp. 143-




149) which excels in the Field of differential and
integral calculus,

MYCIN (Shortliffe, 1976) can be seen as the
first of the fully-fledged expert systems. Not
only does it incorporate domain-specific knowledge
and exploit heuristic techniques, it also has an
explanation facility, that is, it can explain its
reasoning at the request of the user, and the
knowledge base is separated from the program which
manipulates it. The program identifies bacteria in
blood and urine samples and recommends an appro-—
priate therapy.

A number of expert systems are frequently
mentioned in the literature and have now achieved
the status of classics. In addition to those men-
tioned above this group includes PROSPECTOR, a sys-
tem designed to aid in mineral exploration (Duda
et al., 1979), and INTERNIST, now known as CADUCEUS,
which carries out internal medical diagnoses (Weiss
and Kulikowski, 1984, pp. 53-57).

, Expert system shells may be developed by
stripping the domain-specific knowledge away from
the inference engine of an expert system, EMYCIN
was constructed in this way using the MYCIN infer-
ence engine. In theory a new set of domain rules
can be supplied and a new expert system formed.
This has been done successfully using EMYCIN to
produce PUFF, a system which performs analyses on
lung function tests (Hayes—Roth, Waterman, and
Lenat, 1973, p. 325). Other shells are now avail-
able such as’' APES which is an augmented PROLOG and
includes a query facility (Hammond, 1982) and a new
package from the Alvey directorate, which consists
of several example shells for evaluation and assess~
ment, is now on the market. Although shells have
been claimed to be universally applicable, the
type of inference engine inherited from the parent
expert system limits the range of suitable applica-
tions. For example, EMYCIN is obviously most suited
to those problems which can be tackled using diag-
nosis procedures.

Parallel with the growth of expert systems
has been the development of languages particularly
suited to their implementation. Much of the modern
artificial intelligence work is carried out in high
Tevel languages such as LISP, LOGLISP, POP-11,
POPLOG, and PROLOG, PROLOG, for example, has a
backward chaining facility built into it. An
expert system can be produced in any language,
however, and meny of the earliest artificial
intelligence programs were written in languages
such as FORTRAN and ALGOL (Boden, 1977, p. 35).
Naylor (1983), for example, produced working expert
ogystems using BASIC on a home micro computer. One
problem with the specialised artificial intelligence
languages mentioned above that they are mostly con~
fined to mainframe installations and so may not be
available to many archaeological users. A version
of PROLOG, Micro-PROLOG, is available for some
machines and was used, For example, by Brough and
Parfitt (1984) to write a system which ages horse
teeth,

4. How they work

There are three main areas of difficulty in
the attempt to copy the reasoning of the human
expert: knowledge elicitation, knowledge represen~
tation and search strategy. This is, how the
domain knowledge is obtained, how it is structured
and stored, and how it is used in the reasoning pro-
cess. Hayes warns that we must clarify our expec-
tations: do we wish to arrive at human-type conclu-
sions (to emulate) or do we wish to reproduce the
human-type processes (to model):

it is perilously easy to conclude that,
because one has a program which works (in
some sense), its representation of knowledge
must be correct (in some sense) ... if the
program works, so the argument would go,

then its representation must adequately cap-
ture the intended meanings, for that is what
we mean by 'adequate". (Hayes, 1979, pp. 244,
265)

Two main questions may be asked, The first
is the extent to which these systems are epistemo-
logically adequate, that is, whether the knowledge
representation within such systems is sufficient.
The second is whether these systems are heuristi-
cally adequate - is the reasoning mechanism
employed reliable?

4.1 Knowledge elicitation

Before the stage of entering knowledge of a
domain into a system is reached a problem may be
encountered in the process of knowledge elicitation.
One question is whether knowledge should be derived
from "experts" or "practitioners” in a particular
field, since there is a basic difference in the
nature of the expertise which each of these groups
has to offer (Hartley, 1981}, Hartley suggests
that if the knowledge that is to be represented is
fragmentary and consists largely of facts which are
additive in nature, then practitioners are more
suitable, but if the knowledge is structural or
systematic in nature, then experts are better
suited (Hartley, 1981, p. 862). He arpues that

practitioners tend to act separately and therefore
have different experience and knowledge, whilat the
expert may have far greater experience than an indi-
vidual practitioner but cannot match the aggregate
experience of a group of them. On the other hand,
experts have an ability to systematise a domain:
"experts are experts because of their ability to see
the structure of the domain and not merely its
content' (Hartley, 1981, p. 862). A discussion of
the character of archaeological knowledge with
particular reference to the application of expert
systems can be found in Reilly (forthcoming).

Reilly considers that archaeology is primarily a
craft-orientated discipline, and would therefore
see practitioners as being best suited for most
forms of archaeological knowledge elicitation.

Many philosophers have attempted to analyse
the means by which a human expert approaches a prob-
lem, and there remains considerable disagreement,
Some computer scientists working in the field often
complain that they are faced with problems usually
classified as being philosophical rather than
purely practical (for example, Kayser, 1984, p. 168),
Boden (1977), p. 125) claims that artificial
intelligence studies have resulted in '"a new stan-
dard of rigour, and a new appreciation of the
importance of mental process", but this new appre-
ciation is more a realisation of the complexities
of human thought processes than any ability to
actually reproduce more than their results. Few
people are capable of the considerable degree of
introspection required to accurately reproduce
human 'knowledge'. As Sloman says:

Many persons can recognise and use valid
inferences even though they have learnt no
logic and become incoherent when asked to
explain why one thing follows from another ...
(Sloman, 1971, p. 272)

There is a danger in attewpting to explain the means
by which a solution was reached since:

we often invoke 20-20 hindsight and leave
out the mistakes that we made along the
way., Our explanation makes it appear that
we followed a very direct and reasonable
route from beginning to end (Stefik et al.,
1982, p. 162).

Human reasoning employs elements of tacit inference:

global knowledge of which one is not intro-
gpectively aware, but which usually
determines the nature of the thought con-
tents of which one is focally aware

(Boden, 1977, p. 435).

All that knowledge repregentation in an expert sys-
tem can achieve at present is a simulation of the
results of a human expert's reasoning - in other
words, knowledge engineers can construct a model
of human reasoning which, given similar circumstan—
ces, will be able to reach conclusions which would
correspond with those of a human expert. However,
this model may achieve these results while bearing
little or no resemblance to the human reasoning
process, though it may attempt to emulate some of
its characteristics, such as focused reasoning and
'best-guessing'. As Kayser (1984, p. 168) admits,
these engineers' models are more concerned with
robustness and efficiency than with completeness or
consistency. Some systems, such as TEIRESIAS (see
Davis, 1977, for example), assist in the trangfer
of expertise from human to machine, but the human
expert has to conform to the system's model of
reasoning and knowledge, rather than vice versa.

4.2 Knowledge repregentation

One of the changes observable in artificial
intelligence work is the rise in importance of
knowledge representation relative to that of search
techniques (Feigenbaum, 1979, p. 7). The need is to
represent knowledge in such a way that it can be
used effectively. Mylopoulos (1980, pp. 8-10) gives
four important ways knowledge representations in
this area differ from those used in standard
databases:

1) Multiple use of facts - facts stored in a
knowledge base may well have more than one
use, For example, a piece of information must
be available for use by each inference
mechanism used by the system,

2) Incompleteness - an artificial intelligence
knowledge base is constantly developing. The
world model does not, or at least should not,
remain fixed as at the time of the original
implementation. The knowledge base is not
seen as complete: an anawer "NO" from a system
should be interpreted as "I DO NOT KNOW, I DO
NOT STORE THAT INFORMATION",

3) Self knowledge ~ or "meta-knowledge", is
knowledge about knowledge. The system may,
for example, have guidelines as to which types
of facts are useable in which types of situa-
tions, If this meta-knowledge can be repre—
sented in exactly the same way as the other
facts in the knowledge base it is available
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for dse in the same way. Heba-koowledpe nay
be used dn the knowledge sequisition process
ag 1t is, for exasple, in the TEIRESEAS sys—
tem which s part of the MYCTN=GUIDIN-
TEIRESIAS suite (Davia, 1982), Another aspect
of sell hnowledge in a system's abilicy to
angwer questions about [ts actions and lines
of ressoning put to it by o user, this abiiity
baing seen as an important featurs of an
expert dystem by many commentators,

Mylopoulos. (1980) has divided nchemes of
knowledge rvepresentation as follows, although he
notes that few lmplemented sehemies are actually
this simple. The wain distinction made iz fhat
hetween declarative schemes and procedursl schemes,
PROLOG attempts to combine the advantagos of hotl
types, Declarative schemes can be divided into
logical schemey, and network or semantic schemes.
Procedural schemes can be divided in temws of bhe
wayd in which they deal with control prructures und
also with the triggering of the procedures them-
selven, The use of "frames" for representing Know-
lodge employs different ddeas awd is wsually treated
separately,

b3 Doelapative achivmeo

Logical ropresontacion schemes represent
their facts ae a enllection of lbgical formulae,
The l[ormulas may be composed aceording to the rules
of any suitable logic, Their advantages inelude a
sound thooretical grounding in the particular logic
used, a relatively simple md therefore easily
understood notation, and their puitability for use
in wany Lypes of inference mechanisms, Among thelr
disadvantages aro the lock of established rules
for crganising the formulae within o large knowledge
baso and the difficalty of representing heuristic up
procedural knowledge.

Tn 0 network or semantic scheme the desmsin [u
veprogentad in terms of objects and the associations
between objects, There is a strong link hetwesn
this form of representation and the problems of
rearch strategies as the associations botween the
objects can actually be used to define access paths
through the knowledge buse, A secobd advantage lo
that the knowledge base can be more easily organ-
ised than the logical representution while the nota-
tion can be reproduced in the Form of 4 graph and so
le eapily understandable, lowever, there i a ceon—
siderable varfety of wayy In which networks have
bean used and hence a lack of an agroeed terpinalogy.

4ok Prosedural soliemmi

Many procedural schemes are implemented in
L1SF or in LISP-type languages. The knowledge bage
in simply a collection of procedires. Production
systems are a gubset of the procedural representa-
tion group md are probably Lhe wost familise Lorm
of knowledge representation, Mylopowlos (1980, p,B)
identifies one major ndvantage and one major dis—
advantage that procedural representations have when
compared with declarative schemes: while they ean
out gut unnecessary searching by specifying the
interoctions between Facts, the actual knowledge
base i hord to understand and difficult te modify,
Schemes based on this representation do, howewer
attempt to rectify the dispdvantages.

45 Frames

The basie¢ unit of this Lype of reprosontation,
the frome, is also known as n "script", or a
"prototype’, In this type of repregentation the
knowledge base cdnsistn of a séries of Frames, each
trame corresponding to a different stereotyped
situstlon and including information on, lor exnmple,
key objects, relationshipi, and default values. Tha
schems wag originated by Minsky (Minsky, 1975). The
firse proposals were pimple and ueed ideas from most
of the other ropresentation schemes. Later versiond
have developed different aspects: FRL useys a hier-
archical organisation for the knowledge hase, KRL
ponsessos a degree of self-knowledge and allows for
a focusing on the problem in hand. Full referancag
and further examples can be found in Mylopoulos.
(1980, p. 8).

46 Productton syotems

The problem of getunlly extracting the
knowledpe from a human expert is exacerbated by the
way in which most expert systems represent that
knowledge, Wot only is it unlikely thac human
experts reason along production systen Lines, but
many specialints consider chat the type of produc—
tion myatem ysed in mest expert systoms to date i
unsuitable, or at lesst inadoequate, as a means of
knowledge representation. Davis has argued [ov
example that rules are only appropriate to a parti-
cular forim of knowledge, and that it is posaible
thatt

the knewledge in wome domains is inhervently
unguited to a rule-like represencation, since
rules begome incressingly svkward as the
uwmber of premise clavses increases (David,
1982, p. 76).



In other words, production systems are inadequate
representations of complex systems which may work
well in limited areas but which will soon break
down., Davis (op. cit.) suggests that knowledge at
a certain level of formalisation may be appropriate
for the application of production rules: before
this stage, the knowledge is too unstructured while
after it, straightforward algorithms may be more
applicable. Just where archaeological knowledge
fits into this scheme is unclear, although an
intuitive judgment would suggest that it is for the
most part highly unstructured, Some have obviously
considered archaeological knowledge in certain limi-
ted areas to have reached a level at which some
elements can be represented as rules (Brough and
Parfitt, 1984; Ennals and Brough, 1982, for example).
The limitations of production systems and similar
existing means of representation are recognised by
some ([or example, Sloman, 1979, p. 240), but more
powerful descriptive formalisms have yet to be
developed. Until then, a common attitude is often
that if it appears to work, the representation must
be adequate. Hayes (1979, pp. 244, 265) warns
against this behaviouralist criterion on the grounds
that although the system may appear to work, the
compromises and simplification required to enable
the program to operate results in a sparser, more
limited and less thorough representation which will
clearly have repercussions on the performance and
reliability of the system.

The amount, or more specifically, the level of
the knowledge represented within a system will fun-
damentally affect the way in which it performs. Two
general levels can be isolated - 'shallow' and
'deep'. Shallow systems contain only enough know—
ledge to be able to perform a particular task
adequately (whatever that criterion of 'adequacy’
might be). 1In order to do this, such systems are
limited to restricted, well-structured domains which
are treated as being largely self-contained, and
they only operate within these bounds., Most expert
systems which have been produced fall into this
category. A major problem that arises with such
programs is known as the "plateau and cliff effect",
and results in non-uniform performance.

the program is outstanding on the core set
of anticipated applications, but degrades
rather ungracefully for problems just out-
side its domain of coverage. On very
difficult cases, which are not typical of
the ones used in formal evaluations, the
programs may even be misled in cases that
fall within their central domain by complex
interactions or multiple disorders that
they are unable to untangle successfully
(Szolovits, 1982b, p. 15).

Civen the emphasis placed by artificial intelligence
experts on restricted domains as a requirement for
a successful expert system (for example, Stefik et
al., 1982, p. 142; Barr and Feigenbaum, 1982,
p. 183) this situation is unlikely to improve.
Szolovits (1982b, p. 15) argues that a system can-
not be expected to be flawless when the domain of
expertise is subject to uncertainties of knowledge
and lack of data which might equally well trip up a
human expert. Needless to say, an extensive period
of evaluation and modification ought to extend the
plateau of a system's performance and this may be
further extended by the addition of a wider (but
congequently larger, more detailed and complex)
knowledge base in an attempt to provide depth to
the program's knowledge.

A 'deeper' system not only requires a
larger knowledge base, but that knowledge should
also consist of both static knowledge — the rules
and facts - and knowledge about the concepts that
resulted in the choice of those rules and facts and
which determined the methods of inferemce employed.
To some extent, therefore, 'deep' systems should be
able to reason about their knowledge, not just with
it. Doran, for example, saw the inclusion of con-
cepts as well as knowledge about the domain as
being important for archaeological inference (Doran,
1977, p. 453). Arising out of this, another area
in which a deep expert system could improve on the
performance of the shallow systems is in the hand-
ling of conflict. As Szolovits says:

conflict, just as agreement, is reduced to
a manipulation of strength of belief. Yet,
by contrast, we believe that human experts
make -a much more powerful use of occasions
where they detect conflict. They are not
satisfied by a simple revision of their
degree of belief in the hypotheses which
they have previously held; they seek a deeper,
more detailed understanding of the causes of
the conflict they have detected ...
Conflicts provide the occasion for contem—
plating a needed re-interpretation of
previously~-accepted data ... and the
reformulation of hypotheses ... (Szolovits,
1982b, pp. 16-17).

This kind of ability would considerably increase
the power of expert systems, and, if developed,
could result in the ability to test and develop new
hypotheses. Such a system ought to be able to
suggest relevant avenues of approach if unable to
supply a solution to a problem, or point out paral-
lels and analogies between the existing situatiom

and others that it has dealt with in the past, for
example. Such expertise in a machine would repre-
sent a far greater challenge to a human expert than
do the existing shallow systems. -

A further step that has yet to be taken but
which a number of leading artificial intelligence
practitioners have argued is necessary for the con-
struction of properly competent and reliable pro-
gramws, is the incorporation of informal expertise,
or common-sense, in expert gystems. The indefin-
able ability of humane to assess whether an
approach is 'sensible' or not is based on a con-
siderable body of experience which is largely tacit
in nature and may often appear to be guesswork.

Such a facility in an expert system would enable
preater reliability of reasoning within the model of
formal expertise - the rules and facts in the
knowledge base. Whether such a development is
altogether desirable is another matter - it might be
seen as a vast leap towards the ultimate takeover by
ultra-intelligent machines spoken of by Michie
(1982, pp. 225-226).

4.7 Search strategies

Search strategies control the reasoning of an
expert system and are handled by the inference
engine, The most obvious division is that between
general control methods and specific search methods.
General control methods can be further divided into
forward and backward chaining although this should
not suggest that the techniques are mutually exclu-
sive, MYCIN, for example, uses a backward chaining
inference engine but also uses antecedent rules
which proceed by forward chaining,

4.7.1 Forward chaining

This strategy starts from known facts and
works forwards towards a conclusion. A premise is
matched with the antecedents of a rule the conse-
quents of which are then fired. Rules employed in
this way are sometimes known as "demons'" - for
example, Doran (1977) proposed the use of
"recognition demons" in his system for cemetery
analysis SOLCEM-D. A problem with this method is
the process may become hard to control as the num-
ber of routes to be explored increases rapidly
leading to a combinatorial explosion: matches may
be made with a large number of antecedents, which
although irrelevant to the actual problem, will be
followed up until a match fails.

4.7.2 Backward chaining

This strategy moves from the consequents of
the rules to their antecedents. The premise is
matched to the consequent of the rule, the antece-
dent of which is then treated as a new premise. A
backward chaining inference engine may be seen as
"guessing" at a solution and then attempting to
prove it. If the attempt fails the system will
then "guess" at another solution., The technique
provides a more focused pattern of reasoning than
forward chaining.

Searching may also be controlled more imme-
diately by the use of heuristic weightings., These
weightings are applied to rules to influence the
system's choice between potential solutions. These
weightings have also been used to indicate the level
of confidence which the user can place in any solu-
tion, and also to indicate the amount of evidence
for (positive) and against (negative) any statement.
They are, therefore, connected with the major
problem of handling uncertain evidence.

4.8 Handling uncertainty

One of the main ways in which human reasoning
differs from that carried out by machines, at least
so far, lies in the degree to which satisfactory
and relevant conclusions can be drawn from uncer—
tain, incomplete or contradictory evidence, where
the situation is extremely complex or in situations
where there are added complications such as lack of
time, These abilities are used not only in day-to-
day common sense decisions but also in those areas
seen as the territory of the expert, These prob-
lems may well arise because a human expert finds
precision in the situation unnecessary, or because
there are no suitable units of measurement for the
variable (Zadeh, 1979, p. 158). It may even be
that it is difficult to define meaningful variables.
Most of the successful expert systems which have
been produced so far have been based upon well
structured domains in areas with a tradition of
"scientific" thought: for example, medical diagno-
sis, geology, mass spectroscopy, differential and
integral calculus. Tt is particularly in those
areas of knowledge which do not have this orderly
infrastructure that the problems arise: over-
gimplification; the forcing of knowledge into forms
of representation which constrain or distort it
unrealistically; failure to exploit the human
expert's vast stores of heuristic knowledge; and
the difficulty of extracting knowledge from "tame"
experts when they may be unable to express
adequately what it is that they know or how it is
that they reach their conclusions. Archaeology is
a prime example of a subject in this position. The
problems of elicitation are recognised in the
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""'scientific" domain areas and are likely to be even
greater in the humanities subjects with their tradi-
tional distrust of the dehumanising effects of any—
thing seen as "gcientific", The resolution of these
problems is an important research topic.

Several different methods for coping with
uncertainty have been put forward, although no one
method has achieved pre-eminence, or even a general
consensus as to its validity, Some, such as that
employed by MYCIN, have been proved to work in
their real environments although open to theoreti-
cal and practical criticism (Cendrowska and Bramer,
1984) . Bearing in mind the point that different
domain applications are likely to need different
representations and search strategies if they are
not to be unrealistically altered, this is not
surprising.

If it were possible to store all possible
patterns of evidence from within a domain and also
to store all the conclusions which could be genera—
ted from that evidence, a system could emulate a
human expert simply by means of consulting a look-—
up table (Weiss and Kulikowski, 1983, pp. 26-27).
Not only is this undesirable in terms of computer
time and facilities, it is common for the same
evidence patterns to lead to different conclusions.
The nature of some domains does not permit such an
analysis: some domains cannot be reduced to mathe-
matical formulae. Even if some means of judging
between options were found the combinatorial explo-
sion would be unmanageable, The efffort to find a
satisfactory combination of heuristics and a means
of deciding between options is a main area of
research.

An obvious method of making such a decision
would be to assign weightings to each fact or rule
in the knowledge base. In analysing the human
expert's methods of decision making it becomes
obvious that they tend to be informal and intuitive.
The lack of statistically adequate samples for many
domains means that the human must be relied upon to
provide these weightings. Standard statistics and
probability theory may be able to deal with many of
the resultant problems if the number of hypotheses
and the size of the knowledge base is not too great
(Duda, Hart and Nilsson, 1976, p. 1). Systems may
use pure or modified Bayesian theory as the basis
for their weightings, or they may use an individual
ad hoc method, MYCIN uses its own system of two
values for each proposition, one for evidence sup-
porting the proposition, and one for evidence
denying it. These figures are not probabilities as
they are independent of each other (Quinlan, 1982,
p. 9.

The work of Zadeh (for example, 1979) is
strikingly different from the other systems with
its use of linguistic quantification. He bases his
ideas on the concept of a possibility distribution
rather than a probability distribution, that is on
fuzzy logic, and sees them as being particularly
relevant to those areas where standard logic is
unsuitable, where judgments are qualitative rather
than quantitative. His possibility distribution is
based on linguistic divisions (for example, true,
false, not true, not very false, more or less false)
which are expressed in the natural language meaning
representation language PRUF (Possiblistic
Relational Universal Fuzzy) (Zadeh, 1979, p. 149).

The nature of archaeological knowledge sug-
gests that the handling of inexact information is
likely to be important in an archaeological expert
system. A similar need to handle uncertainty has
arisen in other fields and a number of decision-
making techniques have been developed for use in
expert systems. Szolovite and Pauker (1978) iden-—
tify two classes of reasoning or decision-making -
categorical and probabilistic. Categorical
decision-making uses a set of routines or rules
which apply most, if not all, of the time. They
need not be absolutely deterministic (as for
example, the reasoning in the expert system R1) but
are appropriate to most straightforward situations.

A categorical decision typically depends on
relatively few facts, its appropriateness is
easy to judge, and its result is unambig-
uous. A categorical decision is simple to
make and the rule which forms its basis is
usually simple to describe (although its
validity may be complicated to justify)
(Szolovits and Pauker, 1978, p, 117).

This type of reasoning may employ rules—of-thumb
which are true most of the time. Thus, an archaeo-
logical generalisation such as 'if two graves
intersect, they are likely to be well-separated in
time' is most likely to hold true, although there
will doubtless be some occasions when this is not
the case. However, such reasoning on its own is
inadequate for anything other than a highly struc-
tured domain, and while archaeologists may employ
categorical reasoning at times, it is insufficient
to cope with all gituations. Categorical reasoning
cannot be used in situations where there are a num—
ber of factors, some of which may be interdependent,
many of which may be uncertain, and all of which
may have some bearing on a particular decision.
Probabilistic reasoning attempts Lo emulate the
human ability to assess situations and weigh evi-
dence for and against a hypothesis or action., This




approach to the confirmation or otherwise of hypo—
theses has also been proposed for use in archaeolo-
gical theory-building (see, for example, Salmon,
1982) ., Most expert systems employ variations on
the theme of Bayesian decision theory and conse-
quently all are subject to its limitations to some
degree, It should be stressed that these limita-
tions are inherited from the use of Bayesian
approach, and some systems, such as MYCIN, have
attempted to circumvent gsome of these problems.

The Bayesian approach is limited by its appe-
tite for data., A direct implementation of
Bayesian decision theory requires a large database
~- for example, a relatively small problem consis-—
ting of 10 possible hypotheses, 5 possible tests,
each with 2 possible results, would require 63,300
conditional probabilities (Szolovits and Pauker,
1978, p. 120). As a result, independence assump-
tions are generally made in order to reduce the
amount of data required and to make calculation
easier. The assumptions made are that the order in
which the possible tests are performed is unimpor-
tant and that each test is independent of every
other test - the result of one test does not rely
upon the results obtained from any other test.
This considerably reduces the data required: the
example given above is reduced to a total of
approximately 100 for instance. In additionm,
Bayesian theory assumes that there is a fixed
finite set of exhaustive and mutually exclusive
hypotheses within a problem domain. However, in
archaeological terms at least, there can never be
agsumed to be an exhaustive set of hypotheses, let
alone a set in which they are all mutually exclu-
give. Nor can the independence assumption be
safely made; in fact, all the basic assumptions of
Bayesian decision theory are too simplistic in
nature and can be shown to be quite false in many
situations. The result of this is that a system
using such a technique may give conclusions or
predictions that are quite simply wrong. Similar
problems remain in the MYCIN expert system in
spite of its different method of handling uncer-
tainty (see, for example, Cendrowska and Bramer,
1984, p. 489).

Probability-related methods of dealing with
uncertainty all reduce likelihood to a numerical
value, end this gives rise to another problem -
the reliability of the values that are assigned to
hypotheses, be they called confidence factors,
degrees of belief or probabilities. It has often
been stated that experts do not easily carry
probabilities in mind, and while they may feel that
an answer is more or less likely, they are unable
to assign a reliable numerical value to that feel-
ing. - For example, Szolovits and Pauker discovered
that their medical colleagues:

are often extremely reluctant to engage in
any numerical computation involving the
likelihood of a diagnosis or prognosis for
a treatment, Even when official blessing
is bestowed upon Bayesian techniques, we
have seen both experienced and novice
physicians acknowledge and then ignore them.
Doctors certainly have a strong impression
of their confidence in a diagnosis or
treatment, but that impression must arise
more from recognising a typical situation
or comparing the present case to their
past experiences, rather than from any
formal computation of likelihoods
(Szolovits and Pauker, 1978, p. 142).

McCarthy and Hayes go further in their criticism
of these techniques:

The information necessary to assign numeri-
cal probabilities is not ordinarily avail-
able. Therefore, a formalism that required
numerical probabilities would be epistemo-—
logically inadequate (McCarthy and Hayes,
1969, p. 490).

One of the problems in assigning numerical
judgments to hypotheses is that the assignment of
one probability implicitly assigns a probability to
the opposite condition. Thus & rule which has a
weighting of 0.7 implicitly states that there is a
307 chance that the opposite may be true., While a
specialist may consider 0.7 to be a reasonable
assessment of his confidence, he will often dis-
agree with the hidden probability of the opposite
conclusion (Weiss and Kulikowski, 1984, p. 28).

There is also the question of consistency to
be considered. The assignment of a numerical
measure of confidence will differ not only from
person to person: a single person may lack consig-
tency through time and even during the course of
one consultation, These values can only be approx-
imations: the means of achieving them is basically
unsound, and therefore they may actually add to the
uncertainty that they were in fact intended to
alleviate. Even techniques of fuzzy logic are sub-
ject to the same criticisms - the prior assignment
of values may be fundamentally unreliable, and in
the case of fuzzy logic the problem is compounded
since the assumptions that were made in their form—
ulation tend to be concealed more effectively., In
other words, numerical values are unreliable
measures of confidence, and however reliable the
statistical techniques that manipulate them may be
(and these have problems of their own), the actual

confidence that can be placed in these values is
small. It seems unlikely that archaeologists will
be more successful in assigning reliable levels of
confidence to their hypotheses than any other group,
and so these techniques for handling uncertainty
are clearly heuristically inadequate for archaeolo-
gical purposes at least. Having said that, it has
to be admitted that the often ad hoc schemes Ethat
have been used in systems such as MYCIN, DENDRAL
and PROSPECTOR have performed with some success,
and in fact Bayesian decision theory may prove to
be adequate in very restricted problem domains
(Szolovits and Pauker, 1978, p. 122).

5. The Representation of Archaeological Knowledge

Expert systems and the models of domain
knowledge that they contain are incompatible with
many elements of archaeological knowledge.
Archaeological knowledge, indeed, all knowledge, is
a continuum, always changing through time at vary-
ing rates. At any stage, knowledge may be abstrac-
ted to form a discrete model, but that model can
only be an approximation to the continuum as a
whole:

Tor any epecific purpose, a discrete model
can form a workable approximation to a con-
tinuum, but it ie always an approximation
that must leave out features that may be
essential for other purposes. Since the
world is a continuum and, concepts are dis—
crete, a network of concepts can never be a
perfect model of the world ... A closed,
rigid system maintaine a sense of security
by giving instant answers to all perplexi-
ties. But it is a false security that is
threatened by any incompatible viewpoint.
(Sowa, 1984, p. 345).

Archaeologists already abstract and simplify in
order to construct discrete models, but these
models can be freely discussed, modified, accepted
and rejected, while arguably those models within a
machine will be less accessible for these pro-
cegses. More importantly, the requirements
necessary for the construction of an expert system
model world may have considerable repercussions on
the actual form of the knowledge contained within
it. For example, knowledge representation within
an expert system demands a high degree of formali-
sation, and while artificial intelligence special~
ists disagree about the way in which the knowledge
should be represented, archaeologists argue about
whether formalisation is desirable or not.
According to Weizenbaum, abstraction involves:

leaving out of account all those empirical
data which do not fit the particular con-
ceptual framework within which science at
the moment happens to be working.
(Weizenbaum, 1976, p. 127),

Expert systems present the possibility of actually
fosgilising the "particular conceptual framework'
that was current at the time of abstraction.
Whilst the knowledge base may be changed, the
actual theory that governed the original selection
of the rules and facts contained within it, and
which resulted in the initial abstraction in the
first place, remains hidden from the user.

Systems that currently operate are ultimately
unable to justify their model of a domain in terms
of the assumptions that were implicit at the time
of abstraction (for example see Clancy, 1983).
This lack of depth in a system could be of
critical importance, particularly if that system
was being used by a pupil or non-specialist, in
which case incorrect or inapplicable advice might
go unnoticed.

The actual nature of archaeological knowledge
algo differs from the type of knowledge that is
represented in expert systems. Expert systems deal
in relationships between the rules and facts in the
knowledge base and those relationships are basic-
ally very simple. The associative or pattern—
matching inference engine found in most expert sys-
tems operates blindly, without comprehension and
with only a relatively crude controlling mechanism
in the form of heuristic weightings. The inference
engine:

takes into account simply the form of the
particular problem, the theorem to be proved
or the question to be answered, and whatever
is relevant from the knowledge base, again
by virtue of its form and not its content.
The machine does not know or care what you
are talking about. It covers only whether
what you say follows from what you have
agreed to assume (Ennals and Briggs, 1984,
p. 135),

Expert systems have therefore been applied on the
whole to areas where the knowledge is well-
structured and capable of being reduced to a logi-
cal system of relationships. 'Reduced' is perhaps
the term to note here - the process of abstraction
is fundamentally one of reduction. Some areas of
archaeological knowledge may well be capable of
sustaining this level of formalisation, but many
areas are clearly not at present and some may never
be. Regardless of whether formalisation is desir-
able or not, archaeological knowledge consists of
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far more than straightforward logical relation-—
ships. Expert systems basically handle phenomeno-
logical knowledge; that is, they are:

concerned with the relations among phenomena
more than with an understanding of the
mechanisms which are suggested by the obser-—
vations (Szolovits, 1982, p. 16).

Much of what constitutes archaeological knowledge
surely falls into the category of "understanding
mechanisms which are suggested by observatioms".
Logico-deductive methods of reasoning also have
their limitations (see Salmon, 1982, pp. 38-9, for
example). Logic can confirm or deny a hypothesis
or prediction, but it can do little else. "Using
solely deductive logic, one can only formulate the
alternative hypothesis that is the denial of the
original hypothesis" (Salmon, 1982, p. 55).

Clearly, therefore, existing types of systems
have inadequate forms of knowledge representation,
and while new techniques are being developed, these
remain strictly experimental and still require a
large amount of structure and formalisation in the
application domain. These problems are not unique
to archaeological applications, but the effects
which the use of such systems may have on archaeo~
logical knowledge are considerable,

Given the problems described above, it would
seem to be clear that knowledge representations are
basically epistemologically inadequate. That alone
should not mean that such systems ought not to be
implemented, but it does mean that any archaeologi-
cal system should be considered as being primarily
experimental in nature. Artificial intelligence
experts are well aware of the problems of knowledge
representation (see, for instance, Newell, 1982)
but as archaeologists, we should be wary of systems
developed by non-archaeologists who simply see
archaeology as a convenient test bed and archaeolo-
gists as receptive and naive users. "At the moment,
it would be foolhardy to place all our archaeologi-
cal eggs in the knowledge engineers' basket!"
(Reilly, forthcoming).

6. The Present Use of Expert Systems in
Archaeology

The application of expert systems in archaeo-—
logy is a relatively new phenomenon. A number of
uses have been proposed, but few have been fully
implemented and none used in the field.

Doran (1977) recognised the potential advan—
tage of knowledge-based systems over procedural
schemes for archaeological representations., His
procedural SOLCEM program for analysing cemetery
test data was fundamentally limited by its lack of
actual knowledge of cemeteries (Doran, 1977, p.
444), a problem which was approached in his pro-
posed SOLCEM-D system by employing a series of
knowledge-bearing units, called ‘recognition
demons' which acted independently of each other on
an evolving interpretation structure (Doran, 1977,
pp. 446-447),

Ennals and Brough (1982) suggested a somewhat
different approach as a result of their criticism
of Doran's outlined system. They saw Doran's
SOLCEM-D as remaining within the procedural frame-
work, with knowledge represented as sets of proce-
dural or semi-procedural unite (Ennals and Brough,
1982, p. 57). Instead, they proposed the usge of
declarative logical representation echema, of the
type offered by the language PROLOG, where know-
ledge was broken down into declarative production
rules, as found in the MYCIN and DENDRAL systems
for instance. Doran had dismissed production sys-
tems as being too simple for archaeological repre-
gentations (Doran, 1977, p. 445), but Ennals and
Brough argued that archaeologists already them-
selves simplify, and break the subject down into
specialist areas which are then further subdivided
(Ennals and Brough, 1982, p. 58). Ennals and
Brough proposed a system, implemented in Micro-
PROLOG, which acted as a field guide to archaeolo-—
gical monuments, particularly the identification of
earthworks (Ennals and Brough, 1982, pp. 59-60).

Bishop and Thomas (1984) described the imple-
mentation of an expert system on a BBC micro which
attempted to encapsulate the knowledge represented
by Clarke's classification of Beaker pottery. The
system was effectively a computerised typology,
based on Clarke's categories, and isolated a series
of characteristics which allowed it to state a
probability that a given beaker belonged to a par-
ticular category, creating additional categories if
required. A similar system was described by Brough
and Parfitt (1984), designed to age horse remains
from their teeth, and Bourelly and Chouraqui (1984)
produced a classification system for Mediterranean
wine amphorael

A number of observations may be made concern-—
ing the systems proposed by Ennals and Brough
(1982), Bishop and Thomas (1984) and Brough and
Parfitt (1984). These systems are all effectively
classification systems, collecting the characteris-
tics of an object, and producing a diagnosis or
identification. From the published accounts, none
of the systems employed any form of probabilistic
reasoning - straightforward logical reasoning



appears to have been the technique used. All the
systems are based on well-structured data - a list
of rules associating earthwork shape with date
(Ennals and Brough, 1982, p. 60), the catepories
and criteria laid down by Clarke for classifying
Beaker pottery (Bishop and Thomas, 1984), and a
knowledge base derived from a well-established set
of zoological criteria (Brough and Parfitt, 1984).
None of these systems attempt to encapsulate
'concepts' as well as 'knowledge' as Doran required
for SOLCEM-D, but they simply operate on the level
of practical identification or interpretationm.

This is not to imply any major criticism of these
systems: classification systems have been proved to
perform well on a variety of knowledge bases, but
the theory behind these systems remains opaque to
the user - Doran's vision of knowledge-based sys-
tems having an impact on the conceptual and theore-
tical levels of archaeology (Doran, 1977, p. 453)
has not yet been realised. As a result of this,
and also as a consequence of the general over-
selling of expert systems, dissatisfaction with
these forms of system has been increasingly
expressed (see, for example, Wilcock (forthcoming)
for a critique of expert systems and their archaeo-
logical applications).

A 'second generation' of archaeological
expert systems is being developed. One project
(Baker) is designed to establish a classification-
type system using taxonomic data, developing it
further into a 'deeper' system which incorporates
knowledge of the concepts and techniques of environ-
mental archaeology, in order to produce reasoned
strategies for sampling and to make inferences con-—
cerning, for example, diet. Another project
(Huggett) is not concerned with the construction of
a classification-type expert system, but is examin-
ing the development of a system which effectively
acts as an intelligent front-end to an already
existing database, and uses the data to test hypo-—
theses, explore alternative explanations and dis—
play expertise at the more theoretical levels of
archaeology rather than simply performing practical
identifications of artefacts.

7. Conclusions

Artificial intelligence programs in general,
and expert systems in particular, pose a number of
problems for any domain or discipline which may
wish to use them. Indeed, Boden (1977) likens the
artificial intelligence community to the Sorcerer's
Apprentice:

The apprentice learnt just enough magic from
his master to save himself the trouble of
performing an onerous task, but not quite
enough to stop the spellbound buckets and
brooms from flooding the castle (Boden, 1977,
p. 463).

In their current state of development, expert sys-—
tems certainly do not have all the answers to all
the problems. There is a danger, however, that
once it is in operation, users of such a system
may come to see it not as the apprentice but as the
wizard himself, Indeed, expert systems seem often
to create more problems than they solve, although
this may not be realised by designers who may not
fully appreciate the problems of the application
domain. Some of the feafures or requirements of
expert systems may in fact be wholly incompatible
with the structure and organisation of a particu-
lar domain's knowledge, although the very need for
rigidity of structure and rigour of thought which
these systems impose can sometimes be seen as posi-
tively beneficial to the host discipline.

At first sight, expert systems offer a great
deal to an overworked and under-funded archaeologi-
cal community. However, caution must be exercised,
since at present, as has been discussed, there are
considerable problems in knowledge representation
and reasoning which will affect their performance
and hence their acceptability. One danger is that
archaeology may become a test bed for artificial
intelligence research which could result in the
development of systems that are archaeologically
inadequate, The adequacy or otherwise of archaeo-
logical expert systems can be judged only by
archaeologists. Expert systems should not be given
a permanence or status that they do not deserve.

By its very nature, an expert system which is per-
ceived as functioning adequately - that is, produ-
cing the sort of answers that are expected - will
cease to be archaeologically adequate once the con-
ceptual framework under which it was developed has
changed. In essence, expert systems are less flex-
ible than the humans they attempt to emulate,
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which display substantial and hence securely measur-—
able abrasion on their corners. It must be empha-
sised that these measurements cannot be directly
compared between brooches, but only in relation to
each individual brooch.

These brooches were either worn singly or in
pairs and occasionally as a triplet, and inspection
of the results suggests a significant correlation
between patterns of abrasion and their use in one of
these fashions. Conclusions are here focused only
on the measurements for top corners. We find that
of the seventeen headplates of brooches discovered
singly, no less than thirteen (76 per cent) are
more abraded on the top left corner than on the top
right (these larger abrasions are underlined in
Table la for the upper and lower cornmers separately).
Of the remainder, two show no significant differ-
ence, and only two are more abraded on their top
right corners.

0f the eighteen pairs of brooches where
measurements were possible on both top cormers
(see Table 1b), ten pairs (56 per cent) have both
brooches more abraded on the top right corners than
on the top left. Of the remainder, three pairs
have one brooch abraded more on the left and the
other more on the right; one pair has only one
brooch showing a significant difference (again on
the right); and of a further three pairs where one
of the pair does not have measurable top corners,
the other brooch again has its right top corner
more heavily abraded. 1In only one case (the pair
from Lyminge gr. 44) do both brooches have their
top left corners more heavily worn.

In general, then, single brooches are more
abraded on their top left cornmers; paired brooches
are usually both more abraded on their top right
corners. No statistics are required to see that
these results are highly significant. But what do
they signify? Clearly there is evidence here of
the way in which brooches were usually worn and
this shows, in the first place, that there was a
consistency in orientation of brooches on costumes
at this period which we might not have suspected.
Furthermore, not only were single brooches gener-
ally worn in one orientation, but both members of a
pair were often worn in another orientation.

Figure lc demonstrates the possible combinations of
orientation and wear patterns for a pair of brooches
abraded on the top corners, allowing for the manner
in which brooches tend to hang forward from their
fixing point, while Figure 1ld shows possible orien-
tations for a single brooch abraded on its top left
corner., The dotted panel in Figure lc shows the
most common orientation implied by abrasion on top
right corners. We may conclude that the single
brooches were worn with their headplates pointing
leftwards (since the top left corners are more
commonly abraded) and pairs with their headplates
pointing to the right, and probably parallel (both
top right corners more commonly abraded).

Unfortunately the quality of excavation
records for most of these brooches, many excavated
in the last century, permits few reliable confirma-
tions. The more recent account of the discovery of
the Lyminge grave 44 pair does, however, perfectly
conform to our conclusion for that aberrant pair
(Warhurst 1955, 30f.) (one was lying 'at the pelvis,
head pointing towards the right elbow' (i.e. to the
left) and the other 'at the same angle, a few
inches below it'). These Lyminge brooches are
among the largest of the Kentish brooches, and in
this respect are more like the single brooches.

It may be that here lies some partial explanation
for the unusual wear patterns on this pair.

The patterns of abrasion for lower corners
show no such simple relationship, and may reflect
the more complex and perhaps random factors of
brooch and cloth usage which future work along these
lines may perhaps be able to establish.

It is not possible or necessary here to
follow the further implications of this discovery as
they affect our view of dress fastenings and cloth-
ing fashions in the sixth century. The above
example has served to demonstrate the usefulness of
this approach to measurement of abrasion on jewel-
lery. It has been concerned with just one class of
brooch. The possibilities for circular brooches
are clearly not quite so promising, but even here
observations have already been made of uneven abra-
sion (e.g. Avent and Evison, 1982, p. 92). The same
principles could be extended to other clothing
accegsories at this and other periods, particularly
where there are features of their profile which are
sugsceptible to differential wear.
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