Current Issues in
Archaeological
Computing

edited by
M. A. Cooper and
J. D. Richards

BAR International Series 271
1985




Science and Archaeology, 11,16-24.

in Britain" in Gaines,S.W. (ed.), 1981, 100-122.

) Wilcock,J.D. 1974. "The facilities of the PLUTARCH system"
- 198l. "Information Retrieval Applications for Archaeology
Voorrips,A. 1984. "Data catchment analysis and computer

carrying capacity", in Martlew,R. (ed.), 1984, 45-53.

- 1985. (ed.) To Pattern the Past: Mathematical

e

122

Methods in Archaeology, volume 11. P.A.C.T., Amsterdam.

EXPERT SYSTEMS IN ARCHAEOLOGY

Jeremy Huggett

INTRODUCTION

The aim of this paper is to examine selected aspects of
artificial intelligence and to describe some of the
problems and the potential that the use of such techniques
may offer archaeologists. Discussion will be restricted
primarily to the subject of 'problem-solving', since this
facility is becoming increasingly available in the form of
commercial expert system shells and is therefore of more
immediate interest than those areas which are still
strictly experimental. A number of archaeological expert
systems have recently appeared, but there has been little
discussion concerning their application in the discipline.

A standard dictionary definition of intelligence is
"an ability to reason and understand"” (Fink 1968, 209), but
to suggest that machines can be capable of such a thing
tends to raise a storm of protest and philosophical
discussion since there is an inherent implication in this
that people are themselves no more than machines. However,
artificial intelligence may be defined as "the science of
making machines do things which would require intelligence
if done by man" (Minsky 1968, v). Minsky's definition of
machine intelligence requires only that the machine should
simulate intelligent action, not be intelligent itself.
This behavioural definition seems more appropriate since,
when the program of an 'intelligent' machine is examined,
it is clear that the intelligence is only apparent,
achieved by means of clever programming devices.

McCarthy and Hayes (1969, 466) see intelligence as
consisting of two parts: the epistemological part, a repre-
sentation of information or knowledge; and the heuristic
part, a mechanism that solves problems within the
represented domain on the basis of that knowledge. Boden
(1977, 17) defines artificial intelligence as:

the use of programs as tools in the study of
intelligent processes, tools that help in the

discovery of the thinking procedures and episte-
mological structures employed by intelligent
creatures.

Thus artificial intelligence requires both a knowledge (or
representation) of a particular subject or domain and the
ability to reason within that model world. Decision-making
within this domain is seen as being fundamental to intelli-
gence and crucial to problem-solving activities (Millar
1971).

The simulation of these "intelligent processes"
requires that computers should be able to learn from
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experience, to organise information in such a way that it
can be manipulated in solving problems, and presumably to
perform at something approaching a human level of ability
(see Fink 1968, 209,225). In other words, a machine
displaying artificial intelligence should be capable of
solving problems by deploying relevant knowledge from its
knowledge base, or if the knowledge is not there it should
be able to recognise this and 'learn'’ by adding to its
knowledge base. Whether this constitutes 'intelligence'
remains open to question. A dedicated machine with domain-
specific knowledge may appear to be intelligent within its
own sphere, but outside it, it is comparable to an
'idiot savant', ‘“capable of performing mental miracles
within a single narrow category ... yet ... otherwise of
subnormal intelligence" (Michie 1982, 135). Any discussion
of machine intelligence is clearly fraught with difficulty
and perhaps the safest attitude is that:

if the special task which a program performs is a
very difficult one by human standards .... we may
call the program 'powerful', but we still do not
call it intelligent (Michie 1982, 135).

It may therefore be useful if emotive terms such as
'clever’, 'intelligent', or 'understanding' which may creep
into discussion of such machines and their programs are
qualified by the use of inverted commas or "scare-quotes"
(Boden 1977, 17).

Classic examples of early machine problem-solvers are
those programs applied to problems in chess (see Michie
1982) and draughts (see Samuel 1963), for instance. These
employed ‘'heuristic .programming' techniques in order to
assist with solving the problem, rather than use a 'brute
force' method. The 'brute force' approach gives "a bigger
bang for the buck" (Michie 1982, 180) in that it is simpler
(and therefore cheaper) than the heuristic approach; how-
ever, in attempting to solve the problem it will evaluate
all the possibilities open to it. Such an approach is
clearly impractical: in chess, for example, there are
estimated to be 10%*120 possible board positions, and
10**40 in draughts (Boden 1977, 512). Theoretically, such
a search algorithm will eventually produce the answer,
although it may take a considerable time to do so. Without
the use of heuristic programming techniques, a system would
pursue approaches long after a human problem-solver would
have realised that a solution was not in sight. This brute
force technique is otherwise known as the 'British Museum
Algorithm' (Newell, Shaw and Simon 1957; Raphael 1976, 59),
so called because it seems as sensible as providing monkeys
with typewriters in order to reproduce all the books in the
British Museum.

A human problem-solver does not attempt to carry out
an exhaustive search of all available options but limits
evaluation of the problem by intuition, experience or
' common-sense' to the area where a solution seems most

124

B, |

likely. Such human heuristics tend to be 'rules-of-thumb',
intuitive guesses, or, as Boden says:

human reasoning ~ even of the most ‘'explicit' or
‘rigorous' type, as in science and mathematics -
employs integrative principles of tacit inference or
global knowledge of which one is not introspectively
aware, but which usually determine the nature of the
thought contents of which one 1is focally aware
(1977, 435; quoting M. Polanyi).

Heuristic programming attempts to emulate this kind of
behaviour by greatly reducing the area searched, but as a
consequence risking the chance of overlooking the solution
altogether or finding one that is less than satisfactory.
Putting these thought-processes into words is a notoriously
difficult task since, as Sloman (1971, 272) says:

Many persons can recognise and use valid inferences
even though they have learnt no logic and become
incoherent when asked to explain why one thing
follows from another...

The inability of a human expert to express clearly, if at
all, this kind of tacit inference poses a major problem in
attempting to wunderstand the means by which a human
problem-solver arrives at a solution.

In terms of artificial intelligence, a heuristic
device is simply:

a method that directs thinking along the paths most
likely to lead to the goal, less promising avenues
being left unexplored (Boden 1977, 347)

and which "offers solutions that are good enough most of
the time" (Feigenbaum and Feldman 1963, 6). Two main types
of heuristic may be isolated - general heuristics, _common
to most types of problem, and special-purpose heuristics,
restricted to a specific problem area (Feigenbaum and Feld-
man 1963, 6). The former tend to define the type of search
strategy, while the latter define the actual route tbat the
search takes, wusually by calculating a crude weighting for
each decision in an attempt to simulate the human ability
to assess approaches and situations. Search stratggles and
heuristic weighting will be discussed in more detail below.

EXPERT SYSTEMS

A criticism of work in artificial intelligence during the
late 1960's and early 1970's (for example, Sammet 1971? was
that it was on the whole applied to relatively trivial
problems, particularly games such as chess and draughts,
for instance, albeit with some success. As a result, the
1970's saw the development of a number of computer systems
devoted to solving practical problems in the real world.
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Such systems attempted to formalise the knowledge of human
specialists (or domain-experts) in order to model their
reasoning and thus be able to reach conclusions that would
correspond with those of the human experts given similar
circumstances. Examples of such 'expert systems' include
DENDRAL, a system which analyses the structure of organic
compounds and can outperform human experts in the field
(see, among others, Buchanan and Feigenbaum 1978); PUFF,
which interprets lung function tests (for example, see
Hayes-Roth, Waterman and Lenat 1983, 32~5); MACSYMA, which
performs symbolic differential and integral calculus (for
example, Barr and Feigenbaum 1982 vol.2:143-49); INTERNIST,
which carries out internal medical diagnoses (see Barr and
Feigenbaum 1982 vol 2:197-202); MYCIN, which identifies
bacteria in blood and urine and recommends therapy (Short-
liffe 1976); PROSPECTOR, designed to aid mineral
exploration (Duda et al 1979); and a number of others (see,
for examples and references, Barr and Feigenbaum 1982
vol.2; Michie 1982 fig.14.4; Weiss and Kulikowski 1984
table 1.1; Winston 1984).

Expert systems that have been specifically applied to
archaeological problems include a system for ageing
domestic animals from their teeth (Brough and Parfitt
1984); a classification system for Beaker pottery (Bishop
and Thomas 1984); a simulation program for teaching
purposes on the excavation of a burial mound (Dean and
Nichol 1984); and a classification system for wine amphorae
(Bourrelly and Chouraqui 1984).

Before discussing the application of expert systems to
archaeological problems, a brief examination of their
characteristics and operation will be attempted.

An expert system is a 'problem-solver' program which
has knowledge of a narrowly-defined area built into it,
together with an internal model of a domain-expert's reas-
oning and problem-solving know-how, and uses these features
to simulate the performance of the human specialist in
solving problems in the same field. The system is presented
with a problem or situation by the user, and is not only
able to request further information if required, but it can
also explain its steps in reasoning. Thus the system may be
interrogated about questions that it has asked the user, or
about the stage it has reached in its investigation, or
about the conclusions it has offered. In addition, the
expert system should also have a corrective facility so
that new knowledge may be added or faulty knowledge altered
by the human expert. Expert systems are seen as 'models of
competence' (Hartley 1981); they are not intended to act as
models of human reasoning (as a number of earlier 'problem-
solvers' were), but are primarily performance-orientated,
designed to’ produce competent results in the domain of
expertise. They:

are not concerned with similarities between the
resulting systems and human performance (except
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insofar as the latter may provide a possible hint
about ways to structure the domain or to approach
the problem, or as a yardstick for success...)
(Davis and King 1977, 306).

Ultimately, an expert system is seen as acting as a
consultant or advisor. Weiss and Kulikowski see expert
systems as serving as "interactive intelligent problem-
solving and advisory systems that augment the capabilities
of the user" (1984, 10). Michie (1982, 197) divides this
consultancy function of expert systems in three ways, which
he defines in terms of "user-modes". The expert system may
be approached with the user in the role of a client or
pupil, obtaining information and learning about the specia-
lism of the expert system through a series of questions and
answers. Alternatively roles may be reversed and the user
acts as tutor: refining, modifying or enlarging the
system's knowledge.

An expert system may be seen as having three main
parts - first, the knowledge base which contains the rules
and facts about the domain; secondly, a control system or
inference engine which applies the rules; and Fhirdly,. a
global data base consisting of a store of 1nfo;mat109
concerning ' the consultation at hand (Weiss and Kulikowski
1984, 41). A knowledge-based system is fundamentally
different from a conventional program in that the knowledge
is made explicit in the form of facts and rules, rather
than being implicit in the coding of the procedures and
modules found in a standard system (Sowa 1984, 278). The
system is rule-driven, in that problems are solved by the
application of rules from the knowledge base, although the
actual representation of these rules may vary.

KNOWLEDGE REPRESENTATION

The most common form of knowledge representation, and
arguably the most successful in terms of results to _date,
is the 'production system' (see, among others, Davis and
King 1977; Weiss and Rulikowski 1984). A prodgctlon system
knowledge base consists of a series of production rules and
facts such as are found in MYCIN and DENDRAL_and are also
the basis of a variety of commercially ayallable expert
system 'shells' (empty expert systems to whlchla knowledge
base may be added by the user). A production rule is
basically of the type "If [Al, then [BI", also known as a
'situation-action pair'. An example of such a product;on
rule taken from an archaeological expert system for ageing
animal teeth is:
<tooth-n> evidence-for <age-range>
if <tooth-n> identified-as <type-of-tooth>

and <type-of-tooth> present-from <age-range>
(Brough and Parfitt 1984, 53)

In this case, the knowledge base contains a list of types
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of teeth which are associated with a particular age range,
and this rule links the facts known about these age ranges
with the identity of tooth-n. An alternative example (after
Doran 1977, 437) is:

RULE A: if [two graves intersect]
then [they are likely to be well-separated in
time]
RULE B: if [two graves are adjacent]

and [they do not intersect]
then [they are likely to be similar in date]

Note that both halves of the 'if' statement in rule B must
bg true if the conclusion is to be reached. Another rule
might use an 'or' construct, in which case at least one of
the parts of the 'if' statement must be true.

It should be pointed out here that the 'rules' in an
expert system are not necessarily related to archaeological
'laws' as characterised by, for example, Stickel and Chart-
koff (1973), Schiffer (1976) and Salmon (1982). An archaeo-
logical expert system might well employ rules that could be
classified .as ‘'laws' or ‘'law-like statements', but an
expert system 'rule' may equally well be seen as a ‘'rule-
of-thumb' or a heuristic device. Such rules may appear to
be trivial, but this triviality is largely derived from
these often tacit inferences being made explicit. Both
'‘rules' and 'facts' are found in the knowledge base, the
distinction between the two being that facts are merely
simple cases of rules, having no antecedents and therefore
nothing to prove.

Production rules are fundamental to most expert

‘systems in one shape or another. Their format is rigid but

even so they can carry different nuances of meaning. Rules
A and B above work from observations to a hypothesis, but

rules can also work from hypothesis to hypothesis - for
example:
RULE C: if [the two graves are likely to be similar in
date] (from rule B)
then [any grave goods in the graves are likely

to be contemporaryl

Here, an inference can be made between two hypotheses,
where the antecedent of rule C may be matched with the
consequent of rule B. In addition, rules can be used to
structure or direct the reasoning process: if the system
has been told by the operator that the occupant of the
grave in question was male, then there is little point in
the system : asking questions which were designed to
determine the sex of the burial. An ability to trap
pointless questioning will also enhance the apparent
intelligence of the system in the eyes of the user.

The most important feature of a knowledge base is that
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it should be well-structured, that is, rules should not be
scattered at random throughout it. This simplifies the task
of altering the knowledge base at some future date,
particularly if the knowledge base is large. A problem that
can arise is that a number of different rules may be found
that have matching antecedents or consequents, and some
decision has to be made by the system as to which are less
relevant, or less suitable. Whether a rule is appropriate
or not is dependent on the given situation. Some means of
resolving the conflict and selecting the 'best' rule is
therefore needed. One way of achieving this is to group the
rules into ‘'procedures', in which all the rules work
towards a single goal (Davis and King 1977, 315; Lenat
et.al. 1983). These procedures are selected and triggered
by 'meta-rules' which direct the system's reasoning to the
relevant procedures for a given situation. This clearly
involves a larger rule base - not only are there additional
rules in the form of the strategic 'meta-rules', but some
duplication of rules between procedures may also be
necessary.

A development of this kind of technique is the form of
knowledge representation known as 'frames', (otherwise
known as sc¢ripts or prototypes) (see Minsky 1975; Winston
1984; Barr and Feigenbaum 1982). Frames represent knowledge
about specific situations, and provide a structure or
framework consisting of a number of 'slots' which carry
information. The advantage of frames over procedures is
that they group the knowledge more explicitly into relevant
contexts. Both frames and 'meta-rules' act as an index to
the knowledge base and focus the reasoning process.
Differences between the two types of representation should
perhaps be seen more in terms of organisation than any
suggestion that one or the other is necessarily better or
more effective. Given the proven success of production
systems in problem-solving, these will consequently be the
type considered in the remainder of this paper.

What 1is clear from a brief examination of knowledge
representation in expert systems is that they are quite
rigid in format and need to be well-structured. This may
raise difficulties when such systems are applied to an
archaeological problem domain. The effect of formulating
‘rules' and 'facts' in a relatively unstructured domain
such as archaeology is to make the subject appear to bhe
more objective or 'scientific', whereas in fact the process
may simply reinforce the subjective nature of the
inferences and concepts employed.

REASONING IN EXPERT SYSTEMS

In a production system, rules are evaluated by a serigs gf
pattern-matching operations (see, for example, Michie
1982,199~-201) which are controlled by the inference engine.
This inference engine controls the reasoning of the system
and applies the rules found in the knowledge base by logic-
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glly matching the premise of an argument with a rule. The
inference engine does not change when new knowledge is
added to the system since it is held separately from the
knowledge base. 1In the example given above, presented with
the premise 'Two graves, X and Y, intersect!, the system
might find a match with the the antecedent of rule A which
would trigger its consequent, 'The two graves, X and Y, are
likely to be well separated in time.'

A language such as PROLOG has this aSsociative or
pattern-matching facility built into it, while expert
system ‘'shells' generally consist of an inference engine
stripped from a well-tried expert system to which any
knowledge base can be added. For example, EMYCIN
('"Essential' or 'Empty' MYCIN) is an expert system shell
consisting of the inference engine that has been removed
from MYCIN and has subsequently been used as the basis of
other systems, such as PUFF.

As well as controlling the logical pattern-matching
process, the inference engine also handles the overall
search strategy. The type of search conducted by the infer-
ence engine is characterised as either being 'forward
chaining' or 'backward chaining', though the two types may
be combined in a single system.

A forward chaining search strategy will start from
known facts and work towards a conclusion by matching a
premise with the antecedents of a rule and triggering off
the consequents of that rule (a process which was described
above using rule A as an example). The problem with such a
system is that it is difficult to control; rules used in
this way are known as demons, and may be fired off by the
addition of a single piece of information to the knowledge
base. The SOLCEM-D system proposed by Doran (1977) for
cemetery analysis employed 'recognition demons', for
example. '

Backward chaining works from the consequents of rules
to their antecedents. The system searches for a rule with a
consequent which matches the premise and attempts to prove
the antecedent by treatingy it as a new premise. Using the
example shown above from Brough and Parfitt's system for
ageing animal teeth (1984, 53), if the consequent '<tooth-
n> evidence~-for <age-range>' is matched by the premise, the
system then takes this consequent as its new premise and
attempts to prove the antecedents - '<tooth-n> identified-
as <type-of-tooth> and <type-of-tooth> present-from <age-
range>'. The language PROLOG, and the expert system shell
APES (an augmented PROLOG with a query facility) both
operate wusing a backward chaining mechanism. In other
words, a forward chaining inference engine works from known
facts towards a solution, while a backward chaining
inference engine works from a conclusion back to the facts
- it effectively 'guesses' at a likely solution and
attempts to prove it, moving on to another solution if the
proof fails. Both types of search may be found in a single
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expert system: MYCIN has a backward chaining inference
engine yet employs antecedent rules which work by forward
chaining, triggering demons in order to avoid asking the
user pointless questions.

Search strategy may also be controlled in a more
immediate way: by applying heuristic weightings to rules in
order to guide the system's reasoning by associating weigh-
tings with potential solutions. Such heuristic weightings
may not only guide the reasoning of the expert system but
can also indicate to the user the level of confidence that
can be placed in the system's conclusions. In some cases,
for example the expert system Rl (Sowa 1984, 284), the
handling of such weightings has been largely replaced by
exact 1logical reasoning, but it seems highly improbable
that an archaeological expert system could operate success-
fully without some means of handling uncertainty. Archae-
ology is very much an intuitive discipline and is not as
formalised as the scientific and engineering disciplines to
which expert systems have usually been applied. As a
result, the ability of an expert system to handle
uncertainty is particularly relevant when considering an
archaeological problem domain. A generalisation in
archaeology, such as 'adjacent graves in a cemetery are
likely to be similar in date', is simply a rule-of-thumb:
it may be patently incorrect in some circumstances, and
not all archaeologists would agree that such a statement
was valid. This kind of implicit heuristic in a rule may
work adequately in a well-structured area, but for most
applications, and particularly archaeological problems, a
more flexible means of handling uncertainty is required of
an expert system. Archaeologists have to deal with large
amounts of inexact data, and no knowledge base could ever
be considered to be exhaustive or complete.

HANDLING UNCERTAINTY

To date, expert systems have handled uncertainty through a
variety of quasi-probabilistic methods using calcula?ed
heuristic weights. These are variously known as probab}l-
ities, degrees of belief or confidence factors (see Welss
and Kulikowski 1984 for examples). The most common
representation of confidence factors is to associate a
number between -1 (or 0) and +l1 to a particular statement,
where -1 (or 0) indicates no confidence in the statgmgnt,
or lowest probability, and +1 equals highest probability,
or certainty. Confidence factors associated with rules.and
facts that are employed during a consultation are combined
using a number of techniques, such as variations on the
theme of Bayes' Theorem (Shortliffe's Model of Inexact
Reasoning for instance) or introducing elements of fuzzy
logic (see Stefik et al. 1982 for examples), 1in order to
give an overall indication of the degree of confidence that
may be permitted in the conclusions. Thus, for example,
rule B might appear as follows:
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if [two graves are adjacent]
and [they do not intersect]
then [they are likely to be similar in date
(with a confidence factor of 0.7)]

In this case the confidence factor was assigned
arbitrarily and this is a major weakness of the expert
system's ability to handle uncertainty. However reliable
the manipulation of the confidence factors may be, their
initial wvalues, and any values subsequently assigned to
information provided by the user during the course of a
consultation, are provided by an individual. Worse still,
they may be provided by several individuals, separated in
time and place. The values given and their consistency will
depend wultimately upon the the confidence that the user
feels at that time. Initial values for expressing degrees
of certainty in a hypothesis are only approximations: the
level of ©belief that can be displayed in the confidence
factors therefore may not be certain, compounding the
problem that they were in fact intended to alleviate. In
addition, once a confidence factor has been subjectively
assigned, there remains the difficulty of the probability
that is implicitly assigned to the opposite condition - in
rule B, the unstated implication is that there is a 30%
chance that these graves are not similar in date.

Many studies have shown that experts do not easily
carry probabilities ... in mind, and even when they
do report them, the numbers do not turn out to be
true probabilities, because the reporting specialist
will often deny agreement with the hidden implicit
probability of the opposite conclusion (Weiss and
Kulikowski 1984, 28).

A warning about such probabilities was voiced by McCarthy
and Hayes:

The information necessary to assign numerical prob-
abilities is not ordinarily available. Therefore, a
formalism that required numerical probabilities
would be epistemologically inadequate (1969, 490).

Inadequate or not, the fact remains that not only are these
ad hoc probabilities used, they are used with some success
in systems like MYCIN, DENDRAL and PROSPECTOR. However,
given the problems associated with the prior assignment of
confidence factors in an expert system, it may seem to some
that the handling of such probabilities is something of a
juggling act with numbers. For example, Cendrowska and
Bramer criticise MYCIN on the grounds that:

there' are interdependence restrictions that need to
be applied to the estimation of certain parameters
(measure of belief and measure of disbelief in a
hypothesis, supplied by the physician) ... which are
not included in the MYCIN model. In addition, the
use of certainty factors as a means of ranking
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hypotheses is also suspect since examples can be
given of cases where, of two hypotheses, the_ one
with the lower probability would have the higher
certainty factor .... It is interesting that such a
flawed method should give results that are apparant-
ly acceptable in practice (1984, 489).

If the prior probabilities are open to question, then
however sound the statistical procedures may be, the
resulting probabilities cannot be trusted.

An alternative means of expressing gncertainty is to
use 'fuzzy logic' (see Zadeh 1979). Using fuzzy logic,

imprecise terms such as '‘few', 'several' or 'many' may be
used, each term having been previously dgflngd as hav;ng a
set of values. For example, 'geveral' is likely to imply

than two, but less than ten, therefore a low'probab%l—
T€§ewould be éssigned to the ranges 1-2 and >10 with a high
probability for the range 3-9, Quite clearly, however, the
same criticisms made of the prior assignment of cgnfldence
factors may also be levelled at these Euzzy. }oglc sets.
Indeed, while they may provide greater flexibility, thgy
also tend to conceal the assumptions that were made 1in
their formulation more effectively.

EXPERT SYSTEMS AND ARCHAEOLOGY

i discussed the general characteristics of expert
gigtggs and touched on some of the problems thgt archaeo}—
ogists may encounter in knowledge repgesentatlgn and ;n
dealing with uncertainty, one question remalns to be
considered: why (or whether) arghaeologlsts should be
interested in these systems. This is pgrtlcularly relevant
since a number of the most frequently cited expert systems
are not widely employed in their problem domalg. 0f those
mentioned earlier, INTERNIST, MY;IN an@ PROSPECTOR are nqt
"eoxtensively used" (Weiss and Rulikowski 1984 table l.})bin
spite of having a good track record in terms of relia 1e
results. Indeed, of all the medical expert sygtems only
PUFF is in routine use, the reason apparently being that:

... they have yet to satisfy the indispensability
criterion: They are not indispensible to the prgc—
tice of medicine, and physicians perform adequately
without them (Barr and Feigenbaum 1982, 183).

Thus it need not be seen as imperative tbat archagolog%sts
adopt these systems wholesale, indegd in many sltgations
they may be totally inappropriate, either for practical or
ethical reasons.

one of the major reasons put forward for the adopt102
of expert systems is that they can be‘usgd as a gg??zregt
communicating expertise between specialists in ;nt e
subject areas. As Bishop and Thgmas (1984, 5?) poThiS i;
specialisation in archaeology is now the rule.
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clearly the raison d'etre of the system for ageing domestic
animals (Brough and Parfitt 1984), a field where incorrect
interpretations may result from the lack of immediately
available expertise (op.cit., 49). A similar argument is
used by Ennals and Brough (1982) who see expert systems as
a kind of reference work that may be consulted by the non-
gpecialist. Weiss and Kulikowski believe that this dissem-
ination of expertise is a major motivation for building
expert systems, and claim that they can save both time and
money and may be more accurate and certainly more efficient
than human experts, who:

are in short supply, and when available, have little
time at their disposal. While they may be very
proficient at their work, the possibility of
distraction by many different conflicting demands
makes them more vulnerable to errors than a computer
-based system (Weiss and Kulikowski 1984,9).

Associated with this is the belief that expert systems
may be useful not only in modelling the expertise of one
specialist (for example, Clarke's classification of Beaker
pottery - see Bishop and Thomas 1984) but that of several,
thereby enabling comparisons to be made between the variety
of approaches used by experts within a particular special-
ism. One of the trends in expert systems outside archaeol-
ogy is to attempt to synthesise the experience of a number
of experts in order to enhance the expertise offered by the
system.

This formalisation of knowledge is claimed to be one
of the most important reasons for constructing an expert
system, and it is considered that such systematisation is
beneficial to the host discipline. Weiss and Kulikowski,
for example, argue that:

in formalising the knowledge of how an expert human
solves difficult problems with today's best know-
ledge, we are laying out explicitly how future
alternatives may be sought. As long as the expert
states his reasoning only informally and imprecise-
ly, it is impossible to pin down the alternatives;
but as soon as there are formalised statements that
enable a computer to reproduce the outcome of human
reasoning, we can proceed to experiment and see
under what circumstances these statements are appli-
cable (Weiss and Kulikowski 1984, 10).

A number of major assumptions are made in this statement
which raise questions about the use of expert systems in
archaeology, largely associated with the problem of the
formalisation of knowledge that is implicit in an expert
system. The problem of formalising archaeological knowledge
is not emphasised by the proponents of archaeological
expert systems to date, but it is there nevertheless. There
remains considerable disagreement within the profession as
to whether formalisation across the board is desirable or
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even possible. Those archaeologists who do not subscribe to
the 'scientific' approach to archaeology, as typified by
attempts to discover universal generalisations, will
consequently object to the formalisation necessary for an
expert system. Conversely, those who believe that the
scientific approach is valid will presumably be more will-
ing to see expert systems as having a role to play in the
systematisation of archaeological knowledge.

However, the degree of formalisation necessary to
construct an expert system is a form of reductionism, in
that the translation of knowledge from the implicit to the
explicit will inevitably involve the loss of elements in
the process. The formal, fundamentally deductive reasoning
of an expert system may be inapplicable when dealing with
some types of archaeological problem and the reduction
resulting from formalising a body of knowledge can have

profound consequences:

Science can proceed only by simplifying reality. The
first step in 1its process of simplification is
abstraction. BAnd abstraction means leaving out of
account all those empirical data which do not £fit
the particular conceptual framework within which
science at the moment happens to be working
(Weizenbaum 1976, 127).

Even stating the means by which a solution was arrived at is
not a straightforward process since:

when we explain to someone how we solved a problem,
we often invoke 20-20 hindsight and leave out the
mistakes that we made along the way. Our explanation
makes it appear that we followed a very direct and
reasonable route from beginning to end (stefik et
al. 1982, 162).

As if the problem of abstracting archaeological know-
ledge 1is not severe enough, expert systems potent%ally
present the additional hazard of fossilising the “pagtlcul-
ar conceptual framework" that was current at the time of
abstraction. In archaeology, however, to use Hurst's words,
"the hypotheses of yesterday become the beliefs of tgday
and the untruths of tomorrow" (1964, 149). Archaeologlgal
knowledge is in a state of constant flux: systematis%ng
that knowledge could have serious implications for its
future development. It may be that this over-states the
problem, but even though expert systems can 'learn', there
is a danger that once an expert system has been construct-
ed, its area of expertise might be seen as 'complete’.

This fossilisation of knowledge in an expert system is
not helped by the ultimate inability of the system to
justify all its rules and assumptions (see Clancy 198}).
The system's response to a user's request for information
or 'reasons why' is to quote rules from its knowledgg base
as justification for making a particular assumption or
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inference. However, as the explanation moves up from the
particular to the general the rules that can be invoked as
an explanation begin to run out, until at last the machine
has to respond with something along the lines of "because I
was told it was the case". Some, but not all, rules will be
justified by facts held in the knowledge base, but assumpt-
ions normally have to be made in dealing with an archaeo-
logical problem, and such assumptions may not be made
explicit in an expert system. Even if they are stated, the
explanation may be inadequate and the system unable to
provide further information. This would perhaps be accept-
able if the system was being operated by an expert in the
same field, but could cause considerable problems if the
system was being used by a pupil or non-specialist when
incorrect or inapplicable advice may be the result. In
other words, the system does not have 'complete' knowledge
about the conceptual framework within which it was constr-
ucted. While the knowledge base could be extended, perhaps
by the inclusion of bibliographical references for example,
the ultimate inability of the expert system to Jjustify
itself will always be present. This problem also exists in
dealing with the confidence factors associated with hypo-
theses - these weights may be assigned by different people
at different times for different reasons, but the expert
system, other than checking them for internal consistency,
will be unable to explain why certain levels of confidence
were assigned to particular hypotheses.

THE SUITABILITY OF ARCHAEOLOGY AS A HOST DISCIPLINE

Discussion of the motivations behind building expert
systems, and their associated problems, raises a further
guestion - to what extent is archaeology a suitable medium
for the application of these expert systems? Perhaps not
surprisingly, those who have worked on archaeological
expert systems claim that this is not in doubt. Doran, for
example, considers that "archaeology has clear attractions
as a problem domain for artificial intelligence research"
(1977, 433), though he adds that archaeological problems
have their own special characteristics and need special
treatment. Most expert system specialists appear to believe
that there is no area to which expert systems cannot be
eventually applied. Probably the most useful approach to
this question is to examine the particular characteristics
of a problem domain that specialists in expert systems look
for, and to see how far archaeology conforms to these
requirements.

Artificial intelligence experts are generally agreed
on the requirements of a suitable problem domain. For
example, Stefik et al. (1982, 142) isolate three fundament-
al characteristics of a problem domain: the data and know-
ledge should be reliable; they should be static; and the
number of solutions should be small. It is possible to
relax these requirements - for example, unreliable data can
be handled to some extent using confidence factors or fuzzy
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logic - and indeed there are few, if any, problem areas
that can be said to meet these requirements in full. How-
ever, it may be argued that the nearer an application is to
these three ideal requirements the more reliable that
expert system will be. Sowa defines three common features
of application areas:

first, there exist recognised experts in these
fields; second, the knowledge that the experts have
is quantifiable; third, the knowledge can be expres-
sed in declarative rules instead of procedures. If a
problem is so difficult that no human being knows
where to begin, no computer system will be able to
solve it either. 1If the problem requires intuitive
judgements about novel situations .... then the
intuition cannot be formalised in an expert system.
The best applications for an expert system are ones
that require a large amount of well-defined, formal-
isable knowledge (Sowa 1984, 285).

Barr and Feigenbaum conclude from an examination of medical
expert systems that:

The domain must be narrow and relatively self-
contained, the computer should provide substantive
assistance to the physician, and the task should be
one that the physician either cannot do or is will-
ing to let a computer do. (Barr and Feigenbaum 1982,
183).

It is therefore apparent that archaeology is very much on
the fringe as far as the application of expert systems is
concerned. Archaeology may have its experts, but it is
doubtful whether their knowledge is quantifiable, and even
if it were, archaeological knowledge is not complete, reli-

'able or static. This must cast some doubt upon the utility

of expert systems for archaeology in general.

Expert systems that have been successfully applied
have, on the whole, been used in areas where the problem
and the theory associated with it is well-structured. That
ig, they have been applied to problems which are capable of
being effectively reduced to a logical system of relation-
ships. This point may be made concerning the archaeologi-
cal expert system used to age domestic animals (Brough and
Parfitt 1984). However, most archaeological theory and
knowledge 1is as yet insufficiently well-structured or
defined to sustain expert systems in their current form.
Weizenbaum for example, compares the interpretation of
the structure of molecules from mass spectrometer output
(which DENDRAL was successfully designed to carry out) to
an archaeological situation; a problem which:

... is somewhat analagous to that of reconstructing
the 1life of a prehistoric village from the remains
recovered by archaeologists. There is, however, an
important difference between the two problems: there

137




exists a theory of mass spectrometry .... the anal-
yst 1is in a better position than the archaeolo-
gist, who has no strong methods for verifying his
hypotheses (1976, 229-30).

It is probably this feature which makes archaeology attrac-
tive to proponents of artificial intelligence and expert
systems in particular. Archaeology presents them with a
challenge, but the results of that challenge may be of
little wuse to archaeologists (Hunt 1975, 442). Those in
favour of expert systems suggest that they will assist
progress towards formalisation, but this will be seen as
beneficial only by those archaeologists who wish to travel
along that road. Archaeology does not seem to be the natur-
al candidate for the application of expert systems that
some would appear to believe (for example, Ennals and
Brough 1982; Bishop and Thomas 1984).

However, it may be suggested that there are some areas
within archaeology which are capable of sustaining the
systematisation required for an expert system, and in which
such a system might actually be of some use. The prerequis-
ite of such an area will be that there already exists a
body of formal and systematic knowledge which may be encap-
sulated in an expert system. To paraphrase Barr and
Feigenbaum (1982, 183): the domain must be narrow and
relatively self-contained, the computer should provide
substantive assistance to the archaeologist, and the task
should be one that the archaeologist either cannot do or is
willing to 1let a computer do. Certain specialist areas,
such as stratigraphical analysis, may be considered to be
suitable candidates. Here, for example, is a subject which
has well-defined and generally accepted 'rules', but which
is a complex and repetitive task for a human. Stratigraphi-
cal sequences can already be organised by a variety of
computer programs and arguably the addition of a degree of
vexpertise' to these would greatly enhance their perform-
ance., The example set by DENDRAL could suggest that those
highly scientific areas of archaeology, such as radio-
carbon dating and thermoluminescence, might be suitable
areas for the application of expert systems. Other areas
may develop with time, but it would seem reasonable to
require that such areas achieve a degree of stability
before an expert system is applied, rather than during the
process of its application. In other words, we should not
be in the situation of having expert systems looking for an
application; the subject should dictate the system and not
the reverse. Expert systems that are intended for general
use should only be applied to well-defined and ‘'static'
problem areas in archaeology; they are probably not suit-
able for use in fields that are highly theoretical and
subject to the vagaries of new, often mutually exclusive,
hypotheses.

Current work is examining the possibility of applying
expert systems to the more traditional form of archaeo-
logical database in order to assist with the manipulation
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of data in a much more limited way. Since archaeological
data sets are fundamentally incomplete and inexact, an
expert system could be of some use in partially overcoming
some of these problems for the purpose of a particular
analysis. In the analysis of a cemetery, for example,
although the sex of many of the bodies may be unknown, in
some cases it may be possible to infer the likely sex from,
say, the grave goods and an expert system could be used to
indicate 1likely male and female burials using a variety of
technigques. This kind of 'intelligent database' system
would have to be used with extreme caution since it may
justifiably be claimed that it would be 'creating' data and
thereby contaminating the database proper. However, this
could be offset to some extent by the ability to ‘'switch
off' the expert system and in addition, the data that it
'creates' during the consultation or analysis need not be
saved in the database at the end of the session. Caution
must still be exercised, however, since these systems can
only be as good as as the information they contain. While
this information may be added to, the system cannot of
itself improve a bad hypothesis or concept (Weizenbaum
1976, 35).

It is suggested, therefore, that while there may be
areas in which archaeological expert systems may be useful-
ly applied, they should for the present be seen as research
tools rather than be immediately placed on general release
in the field. The widespread and uncritical adoption of
expert systems could result in the stifling of archaeologi-
cal theory, since the encapsulation of archaeological know-
ledge may in fact lead to its stagnation. Discussion and
development of new ideas may be seen as a sign of a healthy
discipline: the gracing of a tool with the title of
texpert' could forestall this kind of activity. Leach
emphasises the role of human intuition in archaeology:

Computers and similar gadgetry have their proper
place ’ in archaeological method, but do not forget
that in the past real progress in your subject ....
has always originated in an inspired guess (1973,
771).
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