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1. Automation and archaeology 

Archaeologists are accustomed to constructing narratives cast within periods frequently 

defined by the rise and ultimate replacement of distinctive technologies. Contemporary 

society has been characterized as being at the beginning of the Fourth Industrial Revolution, 

with the growth of technologies including artificial intelligence, machine learning, robotics, 

nanotechnology, 3D printing, and biotechnology (Leopold et al. 2016:5). Similarly, we are 

said to live in the Second Machine Age, characterized by sustained exponential 

improvements in computing, the dramatic growth in digital information, and accumulating 

recombinant innovation (Brynjolfsson and McAfee 2014). Some argue that automation today 

will be much more disruptive than previous technological interventions, in part because the 

traditional view associating computer-based automation with tasks that are tightly defined 

and clearly sequenced is beginning to break down. Digital devices are increasingly 

demonstrating the capacity to move into roles previously considered un-computable: for 

example, the development of complex algorithmic methodologies combining big data and 

deep learning has enabled computers to perform activities otherwise requiring cognitive 

ability and to improve themselves with little or no human intervention (Manyika et al. 

2017:48). The smartphones in our pockets are powerful networked computers which act as 

digital assistants displaying apparent intelligence in ways that would have seemed like 

science-fiction barely twenty years ago. What are the implications for the future practice of 

archaeology? 

Archaeologists and anthropologists might take comfort from the widely cited study by 

Frey and Osborne (2013; 2017) which analyzed the susceptibility of jobs to computerization. 

They estimated that 47% of total US employment has a high probability (0.7 or above) of 

computerization (Frey and Osborne 2017:269). However, they placed archaeology and 

anthropology 39th out of 702 occupations least likely to be susceptible to computerization, 

with a likelihood that algorithms will displace archaeologists/anthropologists of 0.007. By 

way of comparison, geographers are placed 222nd with a probability of 0.25, historians 283rd 

(0.44), and computer programmers 293rd (0.48) (see Frey and Osborne 2017:appendix A). 

This analysis is not uncontested: other studies reduce the proportion of jobs at risk of 

automation significantly by recognizing that technological change impacts on specific tasks 

within occupations rather than whole occupational groups. For example, a study for the 

Organization for Economic Co-operation and Development (OECD) suggested that only 9% 

of US jobs, rather than 47%, face high automatability (Arntz et al. 2016:25). A subsequent 

more extensive analysis for the OECD suggested around 10% of US jobs and 14% across 32 

OECD countries are highly automatable (Nedelkoska and Quintini 2018:48). On the other 

hand, the McKinsey Global Institute estimates that about half of work activities could 

theoretically be automated using current technologies, and around 60% of occupations have 

the potential for at least one third of their constituent activities to be automated (Manyika et 

al. 2017:2). The situation is therefore not as straightforward as a simple human replacement 

and machine substitution story (Brynjolfsson and Mitchell 2017:1530). On balance it seems 

that, if anything, archaeology is even less susceptible to automation than Frey and Osborne 

calculate, especially in those areas requiring complex sensorimotor skills, but work on the 
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automation of repetitive recognition and identification skills in archaeology has been 

underway for some time. 

2. Characterizing Digital Practice 

Archaeology has been transitioning for some years towards a more automated, computerized 

form. This process is illustrated in Figure 1, building from a model of professional work 

developed by Susskind and Susskind (2015:195-210). Although the model could be seen to 

have an evolutionary aspect to it, in reality the categories overlap: some aspects of practice 

will remain at the same stage, others may only appear at a more ‘advanced’ stage (Susskind 

and Susskind 2015:197), still others may co-exist at several stages simultaneously (see 

Huggett 2021). 

 

Figure 1: A model of archaeological practice 

Archaeology is often conceptualized as a craft practice (Shanks and McGuire 1996; 

Olsen et al. 2012; see also Beale and Reilly 2017; Caraher 2016). For instance, there are 

technical craft aspects to a range of excavation and survey techniques (e.g., Poller 2018) 

which require the acquisition of a creative set of manual and visual skills (e.g., Shanks and 

McGuire 1996:78-83; Bradley 1997:70).  

Standardization can be perceived as a move away from craft and consequently has 

often been resisted in archaeology (see Huggett 2012:540-545). While the adoption of 

standards may be viewed as restrictive to craft practice, the routinization of practice is seen to 

help prevent errors, ensure consistency, and reduce duplication of effort (Susskind and 

Susskind 2015:200; see also Yarrow 2008, for example). Standardization is therefore 

associated with enhanced productivity and efficiency in archaeology, although this too can be 

open to challenge (e.g., Huggett 2000:13-15). Crucially, standardization is an enabling 

feature upon which archaeological digital information infrastructures are predicated (Huggett 

2012:542-543).  

Systematization sees tools and technologies brought to bear in support of the 

archaeologist. These can range from typical office software (word processors, spreadsheets, 

etc.) to more complex tools such as geographical information systems and digital 
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photogrammetry, and to the digital infrastructures providing data search, retrieval, and 

archiving facilities.  

With automation, archaeological tasks are delegated to mechanical, or software, or 

software-driven machines. This diverges from Susskind and Susskind’s fourth stage, 

‘externalization’ (2015:202), in which the practical expertise of professionals is made 

available online to non-specialists, a feature which is already present in the systematization of 

archaeology and is arguably a characteristic of the subject more generally. Different kinds of 

automation can be highlighted which overlap in different ways.  

Most automation in archaeology is better characterized as augmentation, emphasizing 

technological assistance rather than outright replacement. Much automation in archaeology, 

as elsewhere, tends to support and reduce routinised and repetitive work, both in the 

archaeological office environment and in the field. For instance, robotized devices assist and 

augment the archaeologist, ranging from remotely operated to fully automated devices which 

perform tasks with increasing autonomy. These typically function in circumstances that 

might be inaccessible or unattractive to the human practitioner. For example, remotely 

operated vehicles and autonomous surface and underwater vehicles are increasingly 

commonplace in archaeology for sonar and optical survey (e.g., Buxton et al. 2016) to the 

extent that it has been suggested that underwater mapping and site photography will soon be 

delegated to robots, allowing humans to focus on more interesting and appropriate activities 

such as delicate excavation (Foley 2014:2081). Bio-mimetic or anthropomorphic robots such 

as Ocean One facilitate remote recovery and recording using stereoscopic cameras and haptic 

devices to enable the human pilot to feel the forces experienced by the robot’s ‘hands’ (e.g., 

Khatib et al. 2016). Lab-based robotic devices have been employed in the analysis of tool 

use-wear (e.g., Pfleging et al. 2015) and for controlling rigs for automated photogrammetry 

and reflectance transformation imaging (e.g., Duffy et al. 2013:12), for example. Remotely 

controlled terrestrial and aerial drones are increasingly a feature of archaeological fieldwork 

(e.g., Prentiss 2016; Campana 2017), and autonomous characteristics such as collision 

avoidance are appearing in even basic models. At the furthest extreme, space archaeology has 

been described as “essentially a robotic frontier” (Gorman 2015:30).  

An extension of automation and augmentation is automatization (Dertouzos 1997:83-

4) where the computer takes on human information work rather than human physical work in 

a combination of information and automation. This allows tasks to be computerized that 

could not previously be automated, particularly through the development of data-driven 

‘intelligence amplification’ methods. This can be characterized as the use of digital ‘cognitive 

artefacts’, employed to assist in the performance of a cognitive task, and able to represent, 

store, retrieve, and manipulate information (Huggett 2017:section 2). Typical examples in 

archaeology include expert systems and other forms of artificial intelligence tools (e.g., 

Barceló 2009), data mining, agent-based and network modelling (e.g., Wurzer et al. 2015; 

Brughmans et al. 2016), automated or semi-automated classification of pottery (e.g., 

Gualandi et al. 2016) and the detection of features in airborne imagery (e.g., Bennett et al. 

2014). Indeed, given its dependence on data and information, automatization has become 

thoroughly embedded in the current practice of archaeology, as seen in the growing reliance 

on archaeological data archives and their associated search tools. 

A third variant of automation is heteromation (Ekbia and Nardi 2014; 2017) which 

focuses on the role of humans as free or low-cost labor, performing critical tasks in support of 

the technological devices in contrast to automation which keeps the human at arm’s length. 

Heteromation combines elements of augmentation and automatization in archaeology with 

the availability of voluntary labor, as can be seen in participatory digital archaeology 
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(Bonacchi 2017), for example. Indeed, a number of the heteromated systems identified by 

Ekbia and Nardi (2014:section 1.2; 2017:93-157) have also been examined within 

archaeology, including video games (e.g., Reinhard 2018), social media (e.g., Perry and 

Beale 2015), crowdsourced applications (e.g., Ridge 2013), and microwork systems (e.g., 

Bonacchi et al. 2014).  

Different aspects of digital archaeological practice operate at each of these stages and 

often several at the same time. As a broad generalization, archaeology has seen a period of 

standardization and systematization since the 1980s, and is now witness to increasing levels 

of automation, and more recently, to technological developments which supersede or 

augment classic forms of automation by incorporating ‘intelligent’ devices which can 

perform apparently cognitive tasks and modify their own behavior in the light of their 

experience. 

3. The Automated Archaeologist? 

The totality of automation, augmentation, automatization, and heteromation is not far 

removed from Barceló’s proposals for a specialized automated archaeologist capable of 

learning through experience to associate archaeological observations with explanations and 

using them to solve archaeological problems (2009:352; see also Barceló 2007; 2010). The 

specter of an automated archaeologist had been raised earlier in relation to the development 

of expert systems (e.g., Huggett 1985, Huggett and Baker 1985), but Barceló argues that the 

rejection of archaeological expert systems at the time was a consequence of insufficient 

formalization of the subject and resistance as “a result of absurd prejudice and the weights of 

individual authority” (Barceló 2010:20). Since then, the development of deep learning, neural 

networks, and machine learning in general has led to a revival of artificial intelligence 

methodologies, albeit in a more highly developed form. 

This resurgence of interest arises from a congruence of three key areas (Manyika et al. 

2017:24; see also Cath et al. 2018; Schwab 2016:22-24). First is the development of 

machine-learning, in particular employing deep learning and reinforcement-learning in neural 

networks, with Google’s DeepMind and IBM’s Watson being well-known examples. Second 

is an exponential increase in computing capacity and a concomitant drop in costs which 

enable larger and more complex computational models to be implemented. Finally, there has 

been a significant growth in the availability of digital data which can be used as training data 

within these models. Associated with this is an increase in human computing capacity 

through the rise of micro-tasking marketplaces such as the Mechanical Turk, Clickworker, 

and Figure Eight, which provide organizations and researchers access to large, cheap bodies 

of human workers undertaking piecework such as categorizing images, translating and 

tagging text, undertaking surveys and questionnaires, and creating training datasets, for 

instance (for example, Buhrmester et al. 2018; Sheehan 2018). The combination of these 

three factors lies behind advances in the automation of cognitive tasks. However, these 

advances are achieved by lowering expectations and measures for success rather than major 

technical breakthroughs (e.g., Darwiche 2018). Developments remain focused on relatively 

restricted areas of expertise rather than demonstrating high-level machine intelligence 

(HLMI), defined as when unaided machines can accomplish every task better and more 

cheaply than human workers (Grace et al. 2018:731). Surveys of artificial intelligence and 

robotics experts suggest that there is a 50% chance of HLMI by around 2065 (Walsh 

2018:641; Grace et al. 2018:731) although non-experts predict it will be reached much sooner 

(Walsh 2018:641). Expert prediction of HLMI at the 90% level was around 2114, compared 

to non-expert expectations of 2060.  
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The range of reasons proposed for this lag between current machine-learning 

capabilities and HLMI are instructive. For example: “They are not yet good at putting 

knowledge into context, let alone improvising, and they have little of the common sense that 

is the essence of human experience and emotion. They struggle to operate without a pre-

defined methodology … much work remains to be done integrating different capabilities into 

holistic solutions in which everything works together seamlessly.” (Manyika et al. 2017:24).  

In their analysis, Frey and Osborne (2013:262) identified three key technological 

bottlenecks: limited perception abilities and consequent problems undertaking tasks in 

unstructured work environments, the challenge of creative intelligence (the ability to come up 

with novel and valuable ideas and artefacts), and the challenge of social intelligence and the 

ability to negotiate complex relationships and cultural sensitivities. Again, these are not 

uncontested, and all are active areas of current research. For example, Boden (2016:67-72) 

argues that creativity is already a feature of AI though not as much as might be expected, 

partly due to problems of relevance and partly because of disagreements over whether an 

outcome is truly creative. Similarly, social intelligence is a core aspect of social robotics 

research facilitating interaction with human agents (e.g., Dumochel and Damiano 2017) 

although they are currently susceptible to variants of the uncanny valley. 

The present limits of machine learning are demonstrated by characterizing those tasks 

that are suitable for machine learning applications. For example, Bynjolfsson and Mitchell  

(2017:1532-1533) identified 21 task properties for determining suitability for machine 

learning and reduced these to eight key criteria. Foremost amongst these is the requirement 

that the phenomenon or function should be easily described, well-defined, with unambiguous 

end goals. There should be large digital datasets available as training data which are 

representative of future, yet to be incorporated data, and there should be straightforward 

empirical associations in the data rather than a requirement for long chains of reasoning or 

reliance on common sense. It should not be necessary to explain decisions to the human user, 

and errors should be tolerated. Finally, no specialized dexterity, mobility or other physical 

skills should be required. These criteria can be somewhat flexible--for instance, a machine 

learning system can operate in less well-defined areas using statistical and probabilistic tools-

-but there are costs in doing so, such as reducing the transparency of the system’s inferential 

reasoning.  

These criteria make machine learning techniques a challenge since the task areas 

which can be described in these terms are clearly limited, and, furthermore, even these 

restrictive criteria are ambiguous. For example, how large must a dataset be to realistically 

train a machine learning system? How can the representativeness of a dataset be gauged--not 

just from an archaeological perspective, problematic as that is, but as a measure of its 

reliability in relation to as-yet unknown data? Can the outputs or conclusions be accepted in 

the absence of any explanation or justification for them? What levels of error are acceptable? 

Behind the batteries of sampling statistics, training sets and test data, such decisions are often 

ultimately heuristics which appear to work in that specific circumstance rather than being 

truly generalizable. 

Ultimately these characteristics of machine learning tasks and their associated 

bottlenecks underline that there is still some way to go before the basic components identified 

by Barceló (2005:224) for an automatic archaeologist are met: mobile robotics to enable 

physical interaction with archaeological spaces, decision-making tools to determine best 

outcomes, perceptual elements linked to knowledge, and a cognitive and explanatory 

component.  
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4. A Focus on Archaeological Classification and Machine Learning 

Nevertheless, there has been considerable effort in archaeology in recent years to employ 

machine learning in a number of application areas--in particular for the identification and 

automation of artefact classification (especially pottery) and for the automated detection and 

identification of features from aerial or satellite imagery (see, for example, the overview in 

Davis 2020). In both areas, proponents generally see the tools as complementing and 

supporting archaeological practice (e.g., Bennett et al. 2014:897; Makridis and Daras 2012:3; 

Roman-Rangel, Jimenez-Badillo and Marchand-Maillet 2016:2; Wright and Gattiglia 

2018:61) rather than replacing the role of the human expert. However, their ultimate use may 

result in the replacement of expertise: the ability of inexperienced practitioners to perform a 

task in the field rather than relying on specialist expertise (e.g., Brough and Parfitt 1984:49; 

Ennals and Brough 1982; Tyukin et al. 2018), for example. The very availability of a 

successful tool may inadvertently lead to its substitution for a human expert. 

4.1 Machine classification 

Such tools and their associated controversies have a long gestation dating back over thirty 

years. For example, expert systems were proposed to allow a relatively inexperienced user to 

characterize beaker types (Bishop and Thomas 1984), to age horse teeth (Brough and Parfitt 

1984), to classify Mediterranean wine amphorae (Bourelly and Chouraqui 1984), and to 

simulate reasoning around Seljukid and Greek iconography (Lagrange and Renaud 1985). All 

were based on structured data and established systems of classification, and generally 

employed production rules which modelled the problem domain and enabled the system to 

narrow down and classify a case put to it by a user in response to targeted questions. At the 

time, criticism focused on the inflexibility of the systems, their narrow and shallow focus, the 

inappropriateness of the abstraction and reduction required to model their inferential rule 

bases, and the overly optimistic assessment of the tools (e.g., Huggett 1985; Huggett and 

Baker 1985). More recently, there has been a growth in development of deep learning tools 

which seek to reduce a complex problem into a series of simple nested mappings, each 

described by a different layer of the model and generated automatically from data (e.g., 

Goodfellow et al. 2016:5-7), rather than attempting to manually create a set of formal rules 

which adequately described expert reasoning (see Figure 2). For example, several systems 

have focused on the automation of pottery classification (e.g., Makridis and Daras 2012; 

Teddy et al. 2015; Roman-Rangel et al. 2016; Hein et al. 2018; Rasheed and Nordin 2020; 

Wright and Gattiglia 2018). Others have taken related approaches to pottery, such as 

automating the creation of 3D models from 2D catalog drawings (Banterle et al. 2017), an 

intelligent search engine for pottery retrieval (Benhabiles and Tabia 2016), the automated 

classification of mineral inclusions in pottery (Aprile et al. 2014), automatic Munsell color 

characterization of sherds (Milotta et al. 2018), and shape- and decoration-based 

identification of pottery (Itkin et al. 2019), for example. Similar machine learning approaches 

have been applied to automated feature extraction from LiDAR and satellite imagery (see 

overviews in Bennett et al. 2014; Optiz and Herrmann 2018; Davis 2019; 2020).  

4.2 Training and tuning 

These machine learning approaches rely on the availability of very large datasets for training 

purposes as well as large amounts of computing power for generating the deep models, and 

this presents challenges for archaeology. In particular, most pottery-related systems have only 

relatively small datasets available, typically because of the time and expense involved in the 

creation of suitable datasets (e.g., Wright and Gattiglia 2018:62). For instance, the ArchAIDE 

project used 274 images of sherds from 49 out of 84 types for its appearance-based 
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recognition analysis (Gascón et al. 2019:14), and 381 images from 42 different types for its 

shape-based recognition (Gascón et al. 2019:22). Arch-I-Scan scanned ten vessels and 

created an unspecified number of images for testing (Tyukin et al. 2018). Elsewhere, 

Benhabiles and Tabia (2016:4) used a dataset consisting of 1012 digitized, manually 

modelled and semi-automatically generated 3D models, Cintas and colleagues (Cintas et al. 

2019:108) used a set of 1133 profile images, while Aprile and colleagues (Aprile et al. 

2014:263) used 14 thin sections to assess their methodology.  

 

Figure 2: Flowchart comparing the different parts of expert systems and deep learning networks (adapted from Goodfellow 

et al. 2016:10). 

The use of a small training dataset risks overfitting, where the resulting system is 

overly dependent on the characteristics of the training data and performs poorly on additional 

unseen data. On the other hand, if large datasets were available, training a deep network with 

many layers is computationally expensive and can take many hours, even days. 

Consequently, many deep learning applications in archaeology have employed pre-trained 

neural networks, commonly based on the generic ImageNet dataset (e.g., Deng et al. 2009) 

consisting of over 14 million annotated images across more than 20,000 categories. For 

example, ArchAIDE employed a pre-trained version of the ResNet-101 network based upon 

ImageNet (Itkin et al. 2019:9) for their decoration-based tool and a variant of the PointNet 

network (Qi et al. 2017) for their shape-based tool (Itkin et al. 2019:8). Benhabiles and Tabia 

(2019:3) employed AlexNet which was also created against ImageNet, while Roman-Rangel 

and colleagues (Roman-Rangel et al. 2016:12-13) used a subset of the SHREC’13 dataset of 

3D models of generic objects (Li et al. 2013). Such pre-trained models have proved 
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successful in their original classification and identification tasks and have been subsequently 

applied in many other image recognition contexts.  

Although the use of pre-trained models is widespread and can provide substantial 

savings, they can also give rise to problematic results: for instance, drawing inferences from 

features other than the subject of the images, becoming reliant on texture rather than shape, 

and suffering from selection bias (e.g., Ribani and Maregoni 2019:50), famously resulting in 

facial recognition systems displaying racial bias (e.g., Buolamwini and Gebru 2018), for 

example. This underlines that even the very largest datasets may reflect human and machine 

bias. Furthermore, it can be argued that training and test data should be related to each other 

to some extent (e.g., Pan and Yang 2010:1345-1347). Put simply, images of airplanes and 

animals such as found in ImageNet are arguably of little relevance in identifying pottery 

sherds since the features of interest are so different (see also Opitz and Herrmann 2018:30). 

However, in pre-trained models the uppermost layers of the network tend to relate to low-

level functions such as edge detection and geometric shapes while lower layers are more 

closely related to the identification of the original training data. Hence in a new application 

the uppermost layers of the pre-trained network may be frozen and used as they stand while 

the lower layers are fine-tuned to adapt to the new training data (Ribani and Maregoni 

2019:51), although the process for achieving this selection and tuning is not well-defined and 

is rarely discussed in published archaeological examples.  

Related to the freezing and fine-tuning of layers is the question of the number of 

layers in the network in the first place, since the selection of a pre-trained model of a certain 

depth is rarely explained. For example, it is often assumed that the deeper the network (the 

more layers), the more complex and therefore more reliable the performance. However, while 

ResNet-101 with 101 layers may be more accurate in categorizing ImageNet images than 

ResNets with fewer layers (He et al. 2016:774-775), a ResNet with significantly more layers 

does not necessarily improve performance (He et al. 2016:777), and the marginal gains 

achieved by each additional layer diminishes with depth (Wu et al. 2019:119). It may be that 

wider rather than deeper networks are more effective through, for instance, increasing the 

resolution of the input images which can both reduce the depth of the network and enhance 

performance (Wu et al. 2019:122-125). 

These issues underline the need for transparency about decision-making during the 

design and implementation phases of machine learning tools, but even in the most detailed 

accounts key information is frequently missing. This lack of transparency in the 

developmental phase is compounded by the black-boxing of the processes underlying the 

results, with the difficulty of understanding increasing with the depth of the network. 

Furthermore, machine learning systems do not fail gracefully but will tend to force any object 

into existing known categories rather than recognizing it as something not previously 

encountered and flagging it as distinctively new. While currently such tools do not carry the 

authority of an expert, this overall lack of clarity should be of concern (Huggett 2021). 

5. Implications of Automation 

The ubiquity and pervasiveness of machine learning algorithms across a broad range of tasks, 

coupled with their frequently hidden agency, emphasizes the importance of considering the 

conditions for their informed application. This is because the routinized use of such devices is 

associated with what Pasquale describes as ‘automation bias’: “an assumption that a 

machine-driven, software-enabled system is going to offer better results than human 

judgement” (Pasquale 2015:107). A taken-for-granted relationship with these devices as 

simply means to ends is problematic and gives rise to their unthinking prioritization. There is 
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a human susceptibility to fetishize, habituate, and be enchanted by digital tools (Smith 

2018:7-11), but at the same time, the complexity, opacity, inscrutability of the tools 

themselves make it difficult to confirm their proper functioning other than through the 

management of their inputs and observation of their outputs. The challenge therefore is to 

reduce, if not resolve, the shortcomings in this relationship through a dual approach: an 

archaeology of the digital object, and an anthropology of the digital user (Huggett 2017; 

Seaver 2018). In the meantime, and developing the issues raised above, four interrelated key 

areas may be identified: the transparency, explainability, and authority associated with digital 

devices, together with the need for ethics development (see also Huggett 2021). 

5.1 Transparency 

Transparency is necessary to break out of the algorithmic black box and is a theme that has 

been extensively debated (e.g., Domingos 2015; Finn 2017; Fry 2018; O’Neil 2016; Pasquale 

2015; Steiner 2013). Increasing transparency is seen to address concerns over algorithmic 

bias, responsibility, liability, and accountability, and consequently enables informed 

decisions about the deployment and use of such devices. However, the assumption that 

transparency can reveal hidden methods, inferences, and functions is limited by the 

complexities of the underlying systems. Lifting the lid of the black box can simply expose an 

impenetrable mass that even expert developers will have difficulty disentangling because of 

the depth and range of interrelationships and interdependencies. Access to underlying code (if 

available) is not in itself a means of increasing transparency given the size and complexity of 

the code and shortcomings of documentation. This becomes even more problematic where 

machine learning programs essentially reprogram themselves as they learn from data, rather 

than the software being written in its entirety by human programmers.  

This does not mean that these devices and their operations are unknowable, but there 

needs to be a distinction drawn between seeing into or through such devices and 

understanding their functions. For example, Bucher prefers to see them as “neither black nor 

box, but a lot more gray, fluid, and entangled than we may think” (2016:94), and 

consequently proposes three steps to consider in researching algorithms: identifying those 

parts that can and cannot be known and understanding that they cannot be simply read as a 

text; focusing on the performative aspects of the device as it acts on the external world; and 

understanding the histories, evolutions, and contexts of the devices (Bucher 2016:85-93). 

Similar approaches are proposed by Kitchin (2017) and Ananny and Crawford (2018) who 

emphasize the benefits and shortcomings of different approaches to transparency. In 

particular, Ananny and Crawford argue that rather than looking inside the systems, we should 

look across them, “seeing them as sociotechnical systems that do not contain complexity but 

enact complexity by connecting to and intertwining with assemblages of humans and non-

humans” (2018:974). In a similar vein, a layered series of requirements for transparency can 

be defined in terms of a combination of one or more of a critical reading of the code, a 

critical appreciation of the device or package, a critical engagement with the creative process 

of its design, and a critical understanding of its subsequent application within an 

archaeological context (Huggett 2017:section 8; see also Huggett 2021). 

5.2 Explanation 

Demands for the transparency of agential digital devices is frequently seen to require similar 

behavior to human experts, who are expected to be able to explain their actions and decisions 

as a means of checking and confirming their expertise, absence of bias, and overall 

performance. In certain respects, this can be relatively straightforward: the kind of rule-based 

expert systems developed in the 1980s could simply cite their chain of reasoning in terms of 
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the rules applied and the heuristic weights associated with each decision, but as the 

explanation moved up from the particular to the general, they ultimately ran out of rules to 

invoke (Huggett 1985:136). Machine learning and neural networks can be resistant to such 

approaches: the complexity of their decision trees rapidly become uninterpretable since the 

conceptualization of the problem space is machine-based rather than human-based. 

Consequently, the risk is that systems are developed and used that are not fully understood 

and that may be prone to unanticipated and unrecognized error, whereas it should be the case 

that “explanation is at the heart of a responsible, open data science, across multiple industry 

sectors and scientific disciplines” (Guidotti et al. 2018:2). Although some argue that 

explanations may be unnecessary where the decisions are not crucial or where there are no 

unacceptable consequences (e.g., Doshi-Velez and Kim 2017:3; Guidotti et al. 2018:5), for 

black boxes to be capable of being trusted, they require ‘explainability’: to have “the capacity 

to defend their actions, provide relevant responses to questions, and be audited” (Gilpin et al. 

2018, 1). It seems improbable that the application of such systems within an archaeological 

context would not require a similar level of explainability, even if there are no critical or life-

threatening consequences, since the inferences and assumptions underlying the system and 

the context of its application remain important to archaeological understanding and 

interpretation (c.f. Moses 2018). 

At present, most of the methodologies for generating explanations rely on techniques 

such as simplification (decision tree pruning, for instance), the creation of proxy models, 

automatic rule-generation, or reverse-engineering (e.g., Gilpin et al. 2018:3-4; Lipton 

2018:38-42). All are in different ways highly complex and yet still incomplete, not least 

because there is no agreement on what an explanation derived from such systems should 

consist of, or what properties it should have (Guidotti et al. 2018:56; Lipton 2018:37). 

Indeed, some suggest that the explanatory bar is set too high in the first place, that a double-

standard is applied in that the requirement for explanation is based upon two false 

assumptions: “… that it is fair to impose a higher standard of transparency on such tools than 

would ordinarily be imposed on human decisionmakers ... or … that human decisions are 

comparatively more transparent than algorithmic decisions, because they can be inspected at 

a depth to which AI is not presently amenable” (Zerilli et al. 2019:680). They conclude that 

the kinds of explanations that we currently seek but cannot obtain from artificial intelligence 

are ones that we cannot obtain from humans either. What constitutes an appropriate machine-

derived archaeological explanation and at what level it should apply therefore remains 

undetermined.  

5.3 Authority 

One of the key characteristics of artificial surrogates, whether expressed in hardware or 

software, is that they possess authority. Shirky provided an early definition of algorithmic 

authority: “the decision to regard as authoritative an unmanaged process of extracting value 

from diverse, untrustworthy sources, without any human standing beside the result saying 

‘Trust this because you trust me’” (Shirky 2009). More recently, Lustig and Nardi broadened 

out Shirky’s definition by defining algorithmic authority as “the trust in algorithms to direct 

human action and to verify information, in place of trusting or preferring human authority” 

(2015:743), recognizing the authority of algorithms to direct human action as well as to 

decide which information is true.  

As a source of authority, therefore, such devices are capable of exercising agency and 

provide opportunities for human authority to be delegated to them (Huggett 2021). This 

should make their transparency and explainability even more significant, but both daily news 

stories and more extensive studies suggest that instead they are frequently accepted and used 



11 

 

with relatively little consideration. For example, in a study looking at algorithm adoption it 

was found that simply knowing that other people were using the algorithm made it more than 

twice as likely to be adopted, even in the face of knowledge that it gave imperfect advice 

(Alexander et al. 2018). Furthermore, it was observed that using an algorithm reduced the 

cognitive load of the human user--a commonplace with satellite navigation systems, for 

instance--from which it was concluded that “participants did not monitor the algorithm when 

there was no information about it—precisely the situation in which monitoring is most 

warranted.” (Alexander et al. 2018:287). So the authority of the system as a neutral, 

trustworthy tool is often uncritically adopted or, if considered at all, is adopted on the basis of 

peer use. The human practitioner accepts the authority of the tool in a form of deep 

automation bias (Strauß 2018:10), frequently ignorant of the restrictions and limitations 

hidden within and the corresponding implications for decision-making, both in terms of those 

made by the device itself but also those of the human user themselves, and their subsequent 

behavior. This can lead to what has been described as the ‘de-responsibilization’ of the 

human actors, a tendency to hide behind the machine and to assume that its results are correct 

by default (Mittelstadt et al. 2016:13). 

5.4 Ethics and algorithms 

The challenges associated with transparency, explainability, and authority of these devices 

requires a consideration of the ethics of their design, development, and application. What 

limits should be applied to their use? Can these agential devices contain ethical 

programming, and consequently act ethically? What moral responsibilities would such 

devices have towards us, and what responsibilities might be required of us towards them in 

turn? These kinds of questions have been debated within artificial intelligence and robotics 

for some years (e.g., Boddington 2017; Gunkel 2012; Wallach and Allen 2009), but the 

development of ethics within a machine environment remains in relative infancy (e.g., 

Trussell 2018). The fluid nature of algorithms makes an already complex problem even more 

difficult. As Dourish observes, there is a difference between what an algorithm makes 

possible and what an implementation of that algorithm makes feasible (Dourish 2017:213): 

while the essential algorithm remains the same, the technical infrastructure it is embedded 

within and the context of its application and use changes its capability and potential, 

suggesting that a case-by-case consideration is required for the development of a digital 

ethics of agential devices. 

Digital ethics within archaeology are in a relatively early stage of development (see 

overviews by Colley (2015) and Dennis (2020), for example). There have been discussions 

concerning digital public archaeology (e.g., Richardson 2018), remote sensing (e.g., Myres 

2010), 3D reconstruction (e.g., Kamash 2017; Khunti 2018), digital heritage (e.g., Stobiecka 

2020), 3D models of human remains (e.g,. Ulguim 2018) and archaeogaming (e.g., Graham 

2020), while a volume on digital ethics and practice in archaeology (Wilson and Edwards 

2015) only obliquely addressed ethical issues. As yet, there are none concerning 

archaeological applications of machine learning and automation. In addition to ethical 

matters surrounding transparency, explainability, trust and authority, other challenges include 

issues of augmentation and the potential replacement of the human agent, control and 

oversight of the devices, and questions surrounding reproducibility since--like a human 

expert--machine learning systems adapt to new data and new inputs and so may draw 

different conclusions at different times.  

A Participatory Turn 
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Floridi (2014:25) observes that a characteristic of technology is its ‘in-betweenness’: the way 

in which it mediates between the human actor and the world about them (see Figure 3). He 

defines first-order technologies as mediating between people and nature (an axe enables 

people to chop wood, for instance). Second-order technologies mediate between people and 

other technologies (a spanner enables people to tighten bolts to build an engine, for example). 

Third-order technologies mediate between one technology and another, leaving the human 

component a relatively peripheral beneficiary (as, for example, with the Internet of Things) 

(Floridi 2014:25-34). 

 

Figure 3: Human-technology relationships (adapted from Floridi 2014:26-29). 

The craft of archaeology might be conceived as operating at a first-order level, with 

the direct, literally hands-on relationship between the archaeologist and physical, material 

remains mediated by a trowel or similar. A growing proportion of archaeological practice 

operates at a second-order level, with tools inserting themselves into archaeological tasks and 

standardization and systematization facilitating the automation of an increasing amount of 

repetitive work. As these devices spread across a broader range of tasks and acquire apparent 

intelligence through deep learning and other techniques, archaeology potentially moves into a 

third-order level of practice, with highly automated cognitive devices set loose and the 

human archaeologist increasingly relegated to observer status.  

Archaeology is not at the third-order stage yet, although the predictions of business 

analysts, futurists, and other scholars suggest that this is largely a matter of time. For 

instance, if there is a 50% chance of high-level machine intelligence within the next 40 years 

(Walsh 2018:641; Grace et al. 2018:731), significant developments in and applications of a 

broad range of more focused cognitive devices across archaeology might be anticipated by 

that stage. Nor can archaeologists claim that specific aspects of the archaeological taskscape 

are in some way un-computable or un-automatable because experience suggests that this 

again is primarily a question of time: for example, the kinds of robotic devices used in 

archaeology today would have been seen as science fiction some forty years ago. Although 

we may--and likely will--resist the introduction of cognitive robotic devices and intelligent 

software tools in the future, the economics of archaeological practice will often determine 

their introduction into normalized workstreams, as is increasingly evident in the growth of 

Structure from Motion imagery used in archaeological recording, for instance.  
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It would be easy to adopt an overly utopian/dystopian or deterministic approach to 

technological futures in archaeology or indulge in what Broussard calls ‘technochauvinism’ 

(2018:7-8), a variant of technological determinism linking the perceived inevitability of 

technological advancement with a range of other socio-political beliefs such as techno-

libertarianism, neoliberalism, and globalization. However, the critical issue is to turn the 

analytical gaze onto the centrality of the human in digital archaeological practice now and in 

the future. For example, as described above in relation to machine learning, digital 

technologies may be able to handle the mundane but they are unable to take care of the edge 

cases (Broussard 2018:176-7): the unexpected, unpredictable diversions from the norm which 

require human intervention to resolve. Systems which seek to resolve such edge cases are 

called human-in-the-loop (HITL) designs which assign the human agent participant rather 

than observer status. For example, HITL can be employed in machine learning where, when a 

confidence level is below a certain value, the system refers to a human expert and then 

incorporates the human judgement into the knowledge base. This form of incremental 

learning is employed in a wide range of areas such as medical informatics, autonomous 

vehicles, and image recognition, for example. However, the role of the human expert is 

primarily one of training, testing, annotating, and tuning the system in what is ultimately still 

an asymmetric relationship between cognitive digital object and human subject since the 

ultimate aim is the full automation of the process.  

What is proposed here is an archaeologist-in-the-loop approach to intelligent software 

and hardware systems, reflecting a digital participatory turn. This borrows from concepts of 

participatory research in geography and anthropology (e.g., Gubrium et al. 2015; Harper and 

Gubrium 2017) as well as in archaeology (e.g., Harris 2012; Kiddey 2020) which seek to 

reconfigure who produced knowledge and for whom, raising issues of power, trust, and 

ownership, and adopting an explicitly collaborative approach. Here, though, the participatory 

model is flipped to one which seeks to reconfigure the digital divide between human 

archaeologist and machine, ensuring the human practitioner retains a critical influential and 

strategic oversight relative to the machine, rather than adopting a subservient, compliant, 

acquiescent role. This kind of critical engagement is not straightforward, but it is necessary to 

reduce the risks of fetishization, habituation, and enchantment. Focusing on the human 

archaeologist-in-the-loop in this participatory way should also help ensure that the issues of 

authority, transparency, explainability, and the ethics associated with our cognitive devices 

remain foregrounded and prioritized into the future. Furthermore, retaining an emphasis on 

the human practitioner at the center of the digital archaeological engagement means it should 

be possible to avoid an overly scientistic, positivistic, or instrumentalist perspective. By 

recognizing that these devices are not neutral but carry with them inscriptions and delimiting 

assumptions which affect their application and outcomes for both archaeologists and 

archaeology more generally, we can retain space for inspiration, intuition, subjectivity, and 

the primacy of human cognition within future archaeological practice.  
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