See the Sort

written by Jeremy Huggett | 26/04/2015

What's not to like about the idea of central European folk dance being used as a means of
illustrating the operation of different sorting algorithms? That's what the Algo-rythmics did a few
years ago - my personal favourite has to be the Quick Sort (below) with the hats changing with the
operands, but do check them out (all six are on their Youtube page).

Within the last ten days, we’ve been reminded about the invisibility of algorithms which govern
much of our online activity. We've seen Google alter its search ranking algorithm to prioritise
mobile-friendly sites in its search results, Facebook change its newsfeed algorithm to give greater
precedence to posts from friends (who’d have thought it?!), and the French Senate vote to require
search engines to reveal the workings of their search ranking algorithms to ensure they deliver fair
and non-discriminatory results. There’s also been discussion of the role of trading algorithms in the
2010 ‘flash crash’ and stock market movements in the last month or so in the US ...

What this underlines is the way that algorithms affect our experiences, decisions, selections,
relations, and information. At the same time, these algorithms also capture and contain embedded
within them a range of concepts, assumptions, rules and methodologies. This isn’t restricted to
large Internet companies - it also impacts on our day-to-day use of software. For example, Ben
Marwick has recently emphasised that our reliance as archaeologists on software like Excel or SPSS
limits what we can do, highlighting amongst other issues the black boxing of the algorithms these
packages use which makes the processes behind the results opaque. He argues that one of the
benefits of open source is that the code and algorithms that the programs use are not hidden from
us.

Of course, algorithms are not straightforward entities - you only have to compare the list of '10
Algorithms that Dominate our World’" by George Dvorsky (ranging from Google Search, Facebook
News Feed, NSA data collection, recommendation systems on Amazon, Netflix etc.) with the 10
proposed by Marcos Otero (sorts, fourier transforms, data compression, random number generation,
etc.) to see that algorithms operate at different levels of conceptualisation. Indeed, algorithms
frequently use other algorithms and these may use others again in a complex series of
interrelationships. Consequently, algorithms operate at every level, from high frequency financial
trading systems to the handling of basic input/output and mathematical functions within program
code. That's the nature of programming. Different programming languages operate at different
levels of disambiguation, but it ultimately comes down to the machine-code level of moving bits
around registers in order to achieve some fundamental operation. For instance, a brief scan of the
99 Bottles of Beer collection of programs which generate the lyrics to the song of that name quickly
demonstrates that different languages bring their own approaches, levels of verbosity and elegance
of solution while at the same time highlighting the way in which even the simplest task can be
resolved through a wide variety of different algorithms.


https://introspectivedigitalarchaeology.com/2015/04/26/see-the-sort/
http://algo-rythmics.ms.sapientia.ro
https://www.youtube.com/user/AlgoRythmics/videos
http://googlewebmastercentral.blogspot.ca/2015/02/finding-more-mobile-friendly-search.html
http://media.fb.com/2015/04/21/news-feed-fyi-balancing-content-from-friends-and-pages/
http://techcrunch.com/2015/04/17/french-senate-backs-bid-to-force-google-to-disclose-search-algorithm-workings/#.lohcdh:4Mi9
http://www.theguardian.com/business/2015/apr/25/flash-crash-hound-of-hounslow-trillion-dollar-question
http://www.slate.com/articles/business/moneybox/2015/04/bot_makes_2_4_million_reading_twitter_meet_the_guy_it_cost_a_fortune.html
http://arc-team-open-research.blogspot.co.uk/2015/04/doing-quantitative-archaeology-with.html
http://arc-team-open-research.blogspot.co.uk/2015/04/doing-quantitative-archaeology-with.html
http://io9.com/the-10-algorithms-that-dominate-our-world-1580110464
http://io9.com/the-10-algorithms-that-dominate-our-world-1580110464
https://medium.com/@_marcos_otero/the-real-10-algorithms-that-dominate-our-world-e95fa9f16c04
https://medium.com/@_marcos_otero/the-real-10-algorithms-that-dominate-our-world-e95fa9f16c04
http://www.99-bottles-of-beer.net/

Ben Marwick concludes that scripted analysis using an open source language is better for
archaeologists, and science generally, than using proprietary systems. This is doubtless true: after
all, open source means that we can inspect the code and algorithms that sit beneath the surface
user interface. But how many of us would do that? Or would understand what we saw if we did so?
Intriguingly, the Algo-rythmics examples demonstrate that seeing the sort is not the same as
understanding it, in spite of the fact that this is what they are designed to do. The rhythmic dance
movements don't easily convert into the underlying algorithmic code which drives them unless
you've already got some familiarity with the sort routines being represented.

So we need to be clear about what we wish for. Seeing the code alone is not enough. Code with
inline comments is probably not enough for that matter, either, as the comments are all too often
written for other programmers rather than for those trying to understand what is going on. We
might conclude that we need documentation that sits alongside the code, that explains what it
seeks to achieve, the assumptions made, and the principles and methods selected to achieve those
ends. But how often is this available and current?

Ironically, the transparency that ought to be implied by breaking tasks down into their component
parts, formalising practices and methods, making things explicit, cannot be taken for granted (for
example, Rieder and Réhle 2012). Seeing the algorithms doesn’t guarantee that the processes they
purport to model will be understandable. And how far should we deconstruct the code? At what
point can we be confident that it does what we believe it to do, that it isn’t fundamentally flawed by
a lower-level function such as a very definitely non-random random number generator (below!)?

int getRandomNumber ()

return 4. // chosen by fair dice rell.
/I quaranteed to be random.

‘Random’ number generator (xkcd - CC BY-NC)

David Berry’s The Philosophy of Software underlines the challenges involved in achieving the level
of understanding required. For instance, his discussions of the Underhanded C Contest and the
International Obfuscated C Code Contest (Berry 2011, 75ff) demonstrate the way that code can be
designed to disguise or mislead - deliberately in these specific instances, but more likely
inadvertently elsewhere. We certainly need to be able to have more than just faith and belief in the
algorithms that drive our tools, but equally, we need to be realistic about what we can actually
achieve. There's more to seeing the sort than seeing the sort ...

References

Berry, D. 2011 The Philosophy of Software. Palgrave Macmillan.

Rieder, B. and Rdhle, T. 2012 ‘Digital Methods: Five Challenges’, in D. Berry (ed.) Understanding


http://arc-team-open-research.blogspot.co.uk/2015/04/doing-quantitative-archaeology-with.html
http://xkcd.com/221/
http://www.underhanded-c.org/
http://www.ioccc.org/

Digital Humanities, pp. 67-84. Palgrave Macmillan.



