Toolkits for the Mind

written by Jeremy Huggett | 17/04/2015

In 1975 the computer scientist Edsger Dijkstra wrote “The tools we use have a profound (and
devious!) influence on our thinking habits, and, therefore, on our thinking abilities.” Dijkstra was
writing in relation to programming languages but the same might equally apply to the software
products coded in those languages. In this, he recalls Marshall McLuhan’s famous dictum: “We
shape our tools, and thereafter our tools shape us” (although the pedant in me insists that this was
actually by John Culkin).

The title for this post is shamelessly borrowed from an article by James Somers (2015) in which he
seeks to argue that programming languages shape the way their users think:

“Software developers as a species tend to be convinced that programming languages have a
grip on the mind strong enough to change the way you approach problems—even to change
which problems you think to solve.”

Somers isn’t alone in making this claim: for instance, David Berry argues for a need to understand
program code and the systems so constructed since:

“A close reading of code can ... draw attention to the way in which code may encode
particular values and norms ... or drive particular political policies or practices.” (2011, 9).

Similarly, Lev Manovich writes of how software appears to users:

“... what functions it offers to create, share, reuse, mix, create, manage, share and
communicate content ... and assumptions and models about a user, his/her needs, and
society encoded in these functions and their interface design” (2013, 29 - emphasis in
original).

Writing about spreadsheets in 1984, Steven Levy argued:

“The spreadsheet is a tool, and it is also a world view —reality by the numbers. If the
perceptions of those who play a large part in shaping our world are shaped by spreadsheets,
it is important that all of us understand what this tool can and cannot do.”

Making things computable entails assumptions and beliefs at every level, from the deconstruction of
a specific problem and its implementation in code by a programmer through to the end user’s


https://introspectivedigitalarchaeology.com/2015/04/17/toolkits-for-the-mind/
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
http://www.themediumisthemassage.com/the-record/
http://www.technologyreview.com/review/536356/toolkits-for-the-mind/
https://medium.com/backchannel/a-spreadsheet-way-of-knowledge-8de60af7146e

understanding that the software performs the task they require. The programmer has different
algorithms and options available to achieve a certain end, depending on their know-how and their
prioritisation of the efficiency, reliability, elegance and aesthetics of the code. A user will generally
be unaware of these alternatives or the implications of the chosen approach. Indeed, to some extent
the relation of the user with the software has an element of circularity to it: unless we are able to
access the code (assuming we were inclined or equipped to do so), we rely on the evidence of our
experience - that what we put into the system comes back out again in a way in which we perceive
as valuable or useful, hence we can believe that the software is performing in a more or less
expected manner. Even if we are able to access the source code, the reality is that in all probability
its scale and complexity makes it difficult even for experts to follow the ebb and flow of the code.
Consequently, open source or not, we are frequently dealing with software black boxes where only
the inputs and outputs are known to us.

So if there is agreement that the tools - whether the underlying code or the resulting software - are
shaping us to some degree, does any of this really matter to archaeologists?

Well, if the tools we use affect our approaches past and present and potentially shape the future of
the subject, and if we can’t or won't get under the hood of these tools to understand how they work,
then we cannot be sure about what impact they are (or are not) having. Software - and the
underlying code - have all kinds of knowledge, theories, methodologies encoded within but rarely do
these break through to the surface. Indeed, the software is often designed in such a way as to
prevent this, and as Sherry Turkle pointed out some years ago (1997, 36-42) users are leftin a
position whereby we can see how something can be made to work rather than having knowledge of
how something works. How often do we hack around with a piece of software until it (eventually)
achieves more or less what we want, but we’re still none the wiser about how? Introspection, in the
sense of inspecting the running code, may be too ambitious, perhaps even not particularly useful,
but introspection as a considered evaluation of the place, performance, and outcomes of a program
is much more achievable.

For example, five years after the development of the first spreadsheet, VisiCalc, Steven Levy wrote
of the way their introduction increased demand for quantitative decision making (not really a great
surprise, perhaps), but also encouraged a ‘what-if’ approach and an emphasis on what could be
represented numerically, leaving out the more intangible aspects of a problem (not unlike the
spatial determinism associated with GIS). The formulae within spreadsheets are also hidden from
sight - they can be seen (unless they are hidden and locked with a password) but aren’t displayed
by default, although it's not uncommon to receive complex spreadsheets stripped of the original
formulae, obfuscating the origins of the calculated data. This makes understanding all the more
problematic since we are unable to evaluate the underlying model and the assumptions embedded
within it:

“These formulas are based on assumptions made by the model maker. An assumption might
be an educated guess about a complicated cause-and-effect relationship. It might also be a
wild guess, or a dishonestly optimistic view.” (Levy 1984).

For instance, I've commented elsewhere on the effect of the ‘cut and paste’ facility of word
processors on writing. Similarly, what effect does the atomisation and structuring of data have on


https://archive.org/details/VisiCalc_1979_SoftwareArts
https://medium.com/backchannel/a-spreadsheet-way-of-knowledge-8de60af7146e
https://introspectivedigitalarchaeology.com/2015/01/16/changing-gear/

the way we think about and subsequently interpret our data? What are the implications of the use of
image-based modelling to record excavations? And what is the effect of using tools which have
embedded within them modern spatial concepts and visual perspectives if the objective is to
represent and understand past perceptions of environments and settings?

Amongst digital archaeologists, GIS has perhaps received the lion’s share of this kind of
introspection since the mid-1990s (for example, Hacigiizeller 2012, Hu 2012) though there’s much
more to do. But few of the other software tools we use have received anything like the same
attention. How have they shaped archaeological practice, and how are they continuing to reshape
it? The few historiographies of archaeological computing that there are (most recently Djindjian
2015, Moscati 2015) tend to focus at a high level on people, organisations, and techniques. What we
need are critical historiographies of the tools themselves.

References

D. Berry 2011 The Philosophy of Software: Code and Mediation in the Digital Age. Palgrave
Macmillan.

F. Djindjian 2015 ‘Computers and Mathematics in Archaeology, Anatomy of an Ineluctable Success!’,
in F. Giligny, F. Djindjian, L. Costa, P. Moscati and S. Robert (eds.) CAA2014: 21st Century
Archaeology - Concepts, Methods and Tools pp 1-6. (available at http://bit.ly/1IFSCpmC).

P. Hacigtizeller 2012 ‘GIS, critique, representation and beyond’, Journal of Social Archaeology 12 (2),
245-263 http://jsa.sagepub.com/content/12/2/245

D. Hu 2012 ‘Advancing Theory? Landscape Archaeology and Geographical Information Systems’,
Papers from the Institute of Archaeology 21, 80-90
http://www.pia-journal.co.uk/article/view/pia.381/446

S. Levy 2014 (1984) ‘A Spreadsheet Way of Knowledge’
https://medium.com/backchannel/a-spreadsheet-way-of-knowledge-8de60af7146e

L. Manovich 2013 Software Takes Command. Bloomsbury Academic.
http://issuu.com/bloomsburypublishing/docs/9781623566722_web

P. Moscati 2015 ‘Towards a History of Archaeological Computing: An Introduction’, in F. Giligny, F.
Djindjian, L. Costa, P. Moscati and S. Robert (eds.) CAA2014: 21st Century Archaeology - Concepts,
Methods and Tools pp 9-15. (available at http://bit.ly/IFSCpmC).

J. Somers 2015 ‘Toolkits for the Mind’, MIT Technology Review
http://www.technologyreview.com/review/536356/toolkits-for-the-mind/

S. Turkle 1997 Life on the Screen: Identity in the Age of the Internet, Simon & Schuster.


https://introspectivedigitalarchaeology.com/2015/04/10/reproducing-practice/
https://introspectivedigitalarchaeology.com/2015/04/10/reproducing-practice/
http://bit.ly/1FSCpmC
http://jsa.sagepub.com/content/12/2/245
http://www.pia-journal.co.uk/article/view/pia.381/446
https://medium.com/backchannel/a-spreadsheet-way-of-knowledge-8de60af7146e
http://issuu.com/bloomsburypublishing/docs/9781623566722_web
http://bit.ly/1FSCpmC
http://www.technologyreview.com/review/536356/toolkits-for-the-mind/

